Suppr超能文献

基于癫痫发作概率估计的癫痫发作检测:用于检测癫痫发作的特征比较。

Seizure detection using seizure probability estimation: comparison of features used to detect seizures.

作者信息

Kuhlmann Levin, Burkitt Anthony N, Cook Mark J, Fuller Karen, Grayden David B, Seiderer Linda, Mareels Iven M Y

机构信息

Department of Electrical and Electronic Engineering, The University of Melbourne, VIC, Australia.

出版信息

Ann Biomed Eng. 2009 Oct;37(10):2129-45. doi: 10.1007/s10439-009-9755-5. Epub 2009 Jul 10.

Abstract

This paper analyses seizure detection features and their combinations using a probability-based scalp EEG seizure detection framework developed by Marc Saab and Jean Gotman. Our method was evaluated on 525 h of data, including 88 seizures in 21 patients. The individual performances of the three features used by Saab and Gotman were compared to six alternative features, and combinations of these nine features were analyzed in order to find a superior detector. On a testing set with the combination of their three features, Saab and Gotman reported a sensitivity of 0.78, a false positive rate of 0.86/h, and a median detection delay of 9.8 s. Based on 10-fold cross-validation the testing performance of our implementation of their method achieved a sensitivity of 0.79, a false positive rate of 0.62/h, and a median detection delay of 21.3 s. A detector based on an alternative combination of features achieved sensitivity of 0.81, a false positive rate of 0.60/h, and a median detection delay of 16.9 s. By including filtering techniques, it was possible to achieve performance levels similar to Saab and Gotman using our implementation of their method, although this involved increases in detection delays. Of the seizure detection measures investigated, relative average amplitude, relative power, relative derivative, and coefficent of variation of amplitude provided the best performing combinations. These better-performing features can be employed together to make robust and reliable seizure detectors.

摘要

本文使用Marc Saab和Jean Gotman开发的基于概率的头皮脑电图癫痫发作检测框架,分析了癫痫发作检测特征及其组合。我们的方法在525小时的数据上进行了评估,其中包括21名患者的88次癫痫发作。将Saab和Gotman使用的三个特征的个体性能与六个替代特征进行了比较,并分析了这九个特征的组合,以找到一个更优的检测器。在使用他们的三个特征组合的测试集上,Saab和Gotman报告的灵敏度为0.78,误报率为0.86/小时,中位检测延迟为9.8秒。基于10折交叉验证,我们对他们方法的实现的测试性能达到了0.79的灵敏度,0.62/小时的误报率,以及21.3秒的中位检测延迟。基于特征的替代组合的检测器实现了0.81的灵敏度,0.60/小时的误报率,以及16.9秒的中位检测延迟。通过纳入滤波技术,使用我们对他们方法的实现可以达到与Saab和Gotman相似的性能水平,尽管这会导致检测延迟增加。在所研究的癫痫发作检测措施中,相对平均幅度、相对功率、相对导数和幅度变异系数提供了性能最佳的组合。这些性能更好的特征可以一起用于构建强大而可靠的癫痫发作检测器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验