Electrical and Electronic Engineering Department, Imperial College London, London, UK.
Med Biol Eng Comput. 2012 Jul;50(7):659-69. doi: 10.1007/s11517-012-0904-x. Epub 2012 Apr 3.
This study identifies characteristic features in scalp EEG that simultaneously give the best discrimination between epileptic seizures and background EEG in minimally pre-processed scalp data; and have minimal computational complexity to be suitable for online, real-time analysis. The discriminative performance of 65 previously reported features has been evaluated in terms of sensitivity, specificity, area under the sensitivity-specificity curve (AUC), and relative computational complexity, on 47 seizures (split in 2,698 2 s sections) in over 172 h of scalp EEG from 24 adults. The best performing features are line length and relative power in the 12.5-25 Hz band. Relative power has a better seizure detection performance (AUC = 0.83; line length AUC = 0.77), but is calculated after the discrete wavelet transform and is thus more computationally complex. Hence, relative power achieves the best performance for offline detection, whilst line length would be preferable for online low complexity detection. These results, from the largest systematic study of seizure detection features, aid future researchers in selecting an optimal set of features when designing algorithms for both standard offline detection and new online low computational complexity detectors.
本研究确定了头皮 EEG 中的特征,这些特征可在最小预处理的头皮数据中同时对癫痫发作和背景 EEG 进行最佳区分;并且具有最小的计算复杂度,适合在线实时分析。在超过 172 小时的 24 名成年人的头皮 EEG 中,对 47 次癫痫发作(分为 2698 个 2 秒片段),评估了 65 个先前报道的特征的判别性能,包括敏感性、特异性、敏感性特异性曲线下面积 (AUC) 和相对计算复杂度。表现最好的特征是 12.5-25 Hz 频段的线长和相对功率。相对功率具有更好的癫痫检测性能(AUC = 0.83;线长 AUC = 0.77),但它是在离散小波变换之后计算的,因此计算复杂度更高。因此,相对功率在离线检测中具有最佳性能,而线长则更适合在线低复杂度检测。这项来自最大的癫痫检测特征系统研究的结果,有助于未来的研究人员在设计用于标准离线检测和新的在线低计算复杂度检测的算法时,选择最佳的特征集。