Raghu Shivarudhrappa, Sriraam Natarajan, Temel Yasin, Rao Shyam Vasudeva, Hegde Alangar Sathyaranjan, Kubben Pieter L
Department of Neurosurgery, School for Mental Health and Neuroscience of the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, The Netherlands;Center for Medical Electronics and Computing, M S Ramaiah Institute of Technology, Bengaluru 560054, India.
Center for Medical Electronics and Computing, M S Ramaiah Institute of Technology, Bengaluru 560054, India.
J Biomed Res. 2019 Oct 11;34(3):1-3. doi: 10.7555/JBR.33.20190021.
In this paper, complexity analysis and dynamic characteristics of electroencephalogram (EEG) signal based on maximal overlap discrete wavelet transform (MODWT) has been exploited for the identification of seizure onset. Since wavelet-based studies were well suited for classification of normal and epileptic seizure EEG, we have applied MODWT which is an improved version of discrete wavelet transform (DWT). The selection of optimal wavelet sub-band and features plays a crucial role to understand the brain dynamics in epileptic patients. Therefore, we have investigated MODWT using four different wavelets, namely Haar, Coif4, Dmey, and Sym4 sub-bands until seven levels. Further, we have explored the potentials of six entropies, namely sigmoid, Shannon, wavelet, Renyi, Tsallis, and Steins unbiased risk estimator (SURE) entropies in each sub-band. The sigmoid entropy extracted from Haar wavelet in sub-band D4 showed the highest accuracy of 98.44% using support vector machine classifier for the EEG collected from Ramaiah Medical College and Hospitals (RMCH). Further, the highest accuracy of 100% and 94.51% was achieved for the University of Bonn (UBonn) and CHB-MIT databases respectively. The findings of the study showed that Haar and Dmey wavelets were found to be computationally economical and expensive respectively. Besides, in terms of dynamic characteristics, MODWT results revealed that the highest energy present in sub-bands D2, D3, and D4 and entropies in those respective sub-bands outperformed other entropies in terms of classification results for RMCH database. Similarly, using all the entropies, sub-bands D5 and D6 outperformed other sub-bands for UBonn and CHB-MIT databases respectively. In conclusion, the comparison results of MODWT outperformed DWT.
本文基于最大重叠离散小波变换(MODWT)对脑电图(EEG)信号进行了复杂性分析和动态特性研究,以用于癫痫发作起始的识别。由于基于小波的研究非常适合正常和癫痫发作脑电图的分类,我们应用了MODWT,它是离散小波变换(DWT)的改进版本。最佳小波子带和特征的选择对于理解癫痫患者的脑动力学起着至关重要的作用。因此,我们使用四种不同的小波,即哈尔(Haar)、科伊夫曼4(Coif4)、德迈(Dmey)和辛4(Sym4)子带,对MODWT进行了七级的研究。此外,我们还探讨了六个熵,即西格蒙德(sigmoid)、香农(Shannon)、小波、雷尼(Renyi)、塔利斯(Tsallis)和斯坦因无偏风险估计器(SURE)熵在每个子带中的潜力。从拉马亚医学院和医院(RMCH)采集的脑电图数据中,使用支持向量机分类器时,在D4子带中从哈尔小波提取的西格蒙德熵显示出最高准确率,为98.44%。此外,分别对波恩大学(UBonn)和CHB - MIT数据库实现了100%和94.51%的最高准确率。研究结果表明,哈尔小波和德迈小波在计算上分别是经济的和昂贵的。此外,在动态特性方面,MODWT结果显示,D2、D3和D4子带中存在的最高能量以及这些子带中的熵在RMCH数据库的分类结果方面优于其他熵。同样,对于UBonn和CHB - MIT数据库,使用所有熵时,D5和D6子带分别优于其他子带。总之,MODWT的比较结果优于DWT。