Waghorn Ben, Yang Yuhui, Baba Akemichi, Matsuda Toshio, Schumacher Autumn, Yanasak Nathan, Hu Tom C-C
Small Animal Imaging, Department of Radiology, Medical College of Georgia, Augusta, GA 30912, USA.
NMR Biomed. 2009 Oct;22(8):874-81. doi: 10.1002/nbm.1414.
The sodium-calcium exchanger (NCX) is one of the transporters contributing to the control of intracellular calcium (Ca(2+)) concentration by normally mediating net Ca(2+) efflux. However, the reverse mode of the NCX can cause intracellular Ca(2+) concentration overload, which exacerbates the myocardial tissue injury resulting from ischemia. Although the NCX inhibitor SEA0400 has been shown to therapeutically reduce myocardial injury, no in vivo technique exists to monitor intracellular Ca(2+) fluctuations produced by this drug. Cardiac manganese-enhanced MRI (MEMRI) may indirectly assess Ca(2+) efflux by estimating changes in manganese (Mn(2+)) content in vivo, since Mn(2+) has been suggested as a surrogate marker for Ca(2+). This study used the MEMRI technique to examine the temporal features of cardiac Mn(2+) efflux by implementing a T(1)-mapping method and inhibiting the NCX with SEA0400. The change in (1)H(2)O longitudinal relaxation rate, Delta R(1), in the left ventricular free wall, was calculated at different time points following infusion of 190 nmol/g manganese chloride (MnCl(2)) in healthy adult male mice. The results showed 50% MEMRI signal attenuation at 3.4 +/- 0.6 h post-MnCl(2) infusion without drug intervention. Furthermore, treatment with 50 +/- 0.2 mg/kg of SEA0400 significantly reduced the rate of decrease in Delta R(1). At 4.9-5.9 h post-MnCl(2) infusion, the average Delta R(1) values for the two groups treated with SEA0400 were 2.46 +/- 0.29 and 1.72 +/- 0.24 s(-1) for 50 and 20 mg/kg doses, respectively, as compared to the value of 1.27 +/- 0.28 s(-1) for the control group. When this in vivo data were compared to ex vivo absolute manganese content data, the MEMRI T(1)-mapping technique was shown to effectively quantify Mn(2+) efflux rates in the myocardium. Therefore, combining an NCX inhibitor with MEMRI may be a useful technique for assessing Mn(2+) transport mechanisms and rates in vivo, which may reflect changes in Ca(2+) transport.
钠钙交换体(NCX)是参与控制细胞内钙(Ca(2+))浓度的转运体之一,通常介导净Ca(2+)外流。然而,NCX的反向模式可导致细胞内Ca(2+)浓度过载,从而加剧缺血引起的心肌组织损伤。尽管NCX抑制剂SEA0400已被证明可在治疗上减轻心肌损伤,但目前尚无体内技术来监测该药物引起的细胞内Ca(2+)波动。心脏锰增强磁共振成像(MEMRI)可通过估计体内锰(Mn(2+))含量的变化间接评估Ca(2+)外流,因为Mn(2+)已被认为是Ca(2+)的替代标志物。本研究采用MEMRI技术,通过实施T(1)映射方法并用SEA0400抑制NCX,来研究心脏Mn(2+)外流的时间特征。在健康成年雄性小鼠中注入190 nmol/g氯化锰(MnCl(2))后的不同时间点,计算左心室游离壁中(1)H(2)O纵向弛豫率Delta R(1)的变化。结果显示,在未进行药物干预的情况下,MnCl(2)注入后3.4±0.6小时MEMRI信号衰减50%。此外,用50±0.2 mg/kg的SEA0400治疗可显著降低Delta R(1)的下降速率。在MnCl(2)注入后4.9 - 5.9小时,50 mg/kg和20 mg/kg剂量的SEA0400治疗组的平均Delta R(1)值分别为2.46±0.29和1.72±0.24 s(-1),而对照组的值为1.27±0.28 s(-1)。当将该体内数据与体外绝对锰含量数据进行比较时,MEMRI T(1)映射技术被证明可有效量化心肌中的Mn(2+)外流速率。因此,将NCX抑制剂与MEMRI相结合可能是一种评估体内Mn(2+)转运机制和速率的有用技术,这可能反映Ca(2+)转运的变化。