Mogilevskaya Ekaterina, Bagrova Natalia, Plyusnina Tatiana, Gizzatkulov Nail, Metelkin Eugeniy, Goryacheva Ekaterina, Smirnov Sergey, Kosinsky Yuriy, Dorodnov Aleksander, Peskov Kirill, Karelina Tatiana, Goryanin Igor, Demin Oleg
Institute for Systems Biology SPb, Moscow, Russia.
Methods Mol Biol. 2009;563:197-218. doi: 10.1007/978-1-60761-175-2_11.
The metabolic networks are the most well-studied biochemical systems, with an abundance of in vitro and in vivo data available for quantitative estimation of its kinetic parameters. In this chapter, we present our approach to developing mathematical description of metabolic pathways. The model-based integration of reaction kinetics and the utilization of different types of experimental data including temporal dependencies have been described in detail. Software package DBSolve7 which allows us to develop kinetic model of the biochemical system and integrate experimental data has been presented.
代谢网络是研究最为深入的生化系统,有大量的体外和体内数据可用于定量估计其动力学参数。在本章中,我们介绍了我们开发代谢途径数学描述的方法。详细描述了基于模型的反应动力学整合以及包括时间依赖性在内的不同类型实验数据的利用。还介绍了软件包DBSolve7,它使我们能够开发生化系统的动力学模型并整合实验数据。