Theoretical Biophysics, Humboldt-Universität zu Berlin, Germany.
FEBS J. 2014 Jan;281(2):549-71. doi: 10.1111/febs.12525. Epub 2013 Nov 4.
Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms.
自 1913 年 Leonor Michaelis 和 Maude Menten 发表关于酶蔗糖酶反应动力学的论文以来,分子生物学已经取得了巨大的发展。新的测量技术允许对细胞的整个基因组、蛋白质组或转录组进行体内特征描述,而经典的酶分析法仅允许确定米氏动力学的两个参数 V 和 K(m)。然而,米氏动力学仍然被广泛使用,不仅在酶特征描述的体外环境中,而且作为更大的生化反应网络中酶反应的速率定律。在这篇综述中,我们回顾了过去 100 年来起源于米氏动力学的动力学速率定律的历史发展。此外,我们简要总结了用于酶特征描述的实验技术,并讨论了系统存储动力学参数和相关信息的网络资源。最后,描述了在动态数学建模中使用这些数据所带来的新机遇。在这个框架中,传统的体外方法可以与现代的全基因组测量相结合,以促进对潜在复杂机制的深入理解。