Suppr超能文献

雌激素相关基因表达模型揭示了他莫昔芬转录反应中的非线性效应。

A model of estrogen-related gene expression reveals non-linear effects in transcriptional response to tamoxifen.

作者信息

Lebedeva Galina, Yamaguchi Azusa, Langdon Simon P, Macleod Kenneth, Harrison David J

机构信息

Centre for Synthetic and Systems Biology, University of Edinburgh, CH Waddington Building, the Kings Buildings, Mayfield Road, EH9 3JD, Edinburgh, UK.

出版信息

BMC Syst Biol. 2012 Nov 8;6:138. doi: 10.1186/1752-0509-6-138.

Abstract

BACKGROUND

Estrogen receptors alpha (ER) are implicated in many types of female cancers, and are the common target for anti-cancer therapy using selective estrogen receptor modulators (SERMs, such as tamoxifen). However, cell-type specific and patient-to-patient variability in response to SERMs (from suppression to stimulation of cancer growth), as well as frequent emergence of drug resistance, represents a serious problem. The molecular processes behind mixed effects of SERMs remain poorly understood, and this strongly motivates application of systems approaches. In this work, we aimed to establish a mathematical model of ER-dependent gene expression to explore potential mechanisms underlying the variable actions of SERMs.

RESULTS

We developed an equilibrium model of ER binding with 17β-estradiol, tamoxifen and DNA, and linked it to a simple ODE model of ER-induced gene expression. The model was parameterised on the broad range of literature available experimental data, and provided a plausible mechanistic explanation for the dual agonism/antagonism action of tamoxifen in the reference cell line used for model calibration. To extend our conclusions to other cell types we ran global sensitivity analysis and explored model behaviour in the wide range of biologically plausible parameter values, including those found in cancer cells. Our findings suggest that transcriptional response to tamoxifen is controlled in a complex non-linear way by several key parameters, including ER expression level, hormone concentration, amount of ER-responsive genes and the capacity of ER-tamoxifen complexes to stimulate transcription (e.g. by recruiting co-regulators of transcription). The model revealed non-monotonic dependence of ER-induced transcriptional response on the expression level of ER, that was confirmed experimentally in four variants of the MCF-7 breast cancer cell line.

CONCLUSIONS

We established a minimal mechanistic model of ER-dependent gene expression, that predicts complex non-linear effects in transcriptional response to tamoxifen in the broad range of biologically plausible parameter values. Our findings suggest that the outcome of a SERM's action is defined by several key components of cellular micro-environment, that may contribute to cell-type-specific effects of SERMs and justify the need for the development of combinatorial biomarkers for more accurate prediction of the efficacy of SERMs in specific cell types.

摘要

背景

雌激素受体α(ER)与多种类型的女性癌症有关,并且是使用选择性雌激素受体调节剂(SERM,如他莫昔芬)进行抗癌治疗的常见靶点。然而,SERM反应的细胞类型特异性和患者间变异性(从抑制到刺激癌症生长)以及耐药性的频繁出现是一个严重问题。SERM混合效应背后的分子过程仍知之甚少,这有力地推动了系统方法的应用。在这项工作中,我们旨在建立一个ER依赖性基因表达的数学模型,以探索SERM可变作用的潜在机制。

结果

我们开发了一个ER与17β-雌二醇、他莫昔芬和DNA结合的平衡模型,并将其与ER诱导基因表达的简单常微分方程模型相联系。该模型根据广泛的文献实验数据进行参数化,为用于模型校准的参考细胞系中他莫昔芬的双重激动/拮抗作用提供了合理的机制解释。为了将我们的结论扩展到其他细胞类型,我们进行了全局敏感性分析,并在广泛的生物学合理参数值范围内探索模型行为,包括癌细胞中的参数值。我们的研究结果表明,对他莫昔芬的转录反应以复杂的非线性方式受几个关键参数控制,包括ER表达水平、激素浓度、ER反应性基因的数量以及ER-他莫昔芬复合物刺激转录的能力(例如通过招募转录共调节因子)。该模型揭示了ER诱导的转录反应对ER表达水平的非单调依赖性,这在MCF-7乳腺癌细胞系的四个变体中得到了实验证实。

结论

我们建立了一个最小的ER依赖性基因表达机制模型,该模型预测了在广泛的生物学合理参数值范围内对他莫昔芬转录反应的复杂非线性效应。我们的研究结果表明,SERM作用的结果由细胞微环境的几个关键成分决定,这可能导致SERM的细胞类型特异性效应,并证明需要开发组合生物标志物以更准确地预测SERM在特定细胞类型中的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8803/3573949/2e1932314f72/1752-0509-6-138-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验