Suppr超能文献

Fentanyl analogs: structure-activity-relationship study.

作者信息

Vucković S, Prostran M, Ivanović M, Dosen-Mićović Lj, Todorović Z, Nesić Z, Stojanović R, Divac N, Miković Z

机构信息

Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Dr Subotica 1, Belgrade, Serbia.

出版信息

Curr Med Chem. 2009;16(19):2468-74. doi: 10.2174/092986709788682074.

Abstract

Fentanyl is the prototype of the 4-anilidopiperidine class of synthetic opioid analgesics. This study was aimed to review the structure-activity-relationship (SAR) of fentanyl analogs substituted in the position 3, or 4 of the piperidine ring. Pharmacological results show that the groups in position 3 of the piperidine ring, which are larger than methyl, severely reduce the analgesic potency compared to fentanyl. It is likely that the steric factor alone (i.e. voluminosity of the group and cis/trans isomerism), rather than the polarity and/or chemical reactivity, plays a crucial role in the analgesic potency of this series. Although the duration of action, in general, does not depend on the stereochemistry, longer action of the most potent 3-alkyl fentanyl analogs such as cis-3-methyl- and cis-3-ethyl fentanyl, is more likely influenced by pharmacodynamic, rather than pharmacokinetic variables. Also, it is possible that the introduction of a functional group such as 3-carbomethoxy reduces the duration of action by altering pharmacokinetic properties. SAR findings obtained by evaluating the neurotoxic effects of fentanyl analogs substituted in the position 3 of the piperidine ring parallel the SAR findings on analgesia in regard to potency and duration of action. This might suggest that similar receptors are involved in producing both antinociceptive and neurotoxic effects of these drugs. It appears that both the potency and the duration of action in the series of fentanyl analogs substituted in position 4 of the piperidine ring is influenced only by the steric requirement and not by the chemical nature of the substituent.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验