Suppr超能文献

苜蓿中华根瘤菌CpdR1对于协调细胞周期进程和共生慢性感染至关重要。

Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection.

作者信息

Kobayashi Hajime, De Nisco Nicole J, Chien Peter, Simmons Lyle A, Walker Graham C

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Mol Microbiol. 2009 Aug;73(4):586-600. doi: 10.1111/j.1365-2958.2009.06794.x. Epub 2009 Jul 7.

Abstract

ATP-driven proteolysis plays a major role in regulating the bacterial cell cycle, development and stress responses. In the nitro -fixing symbiosis with host plants, Sinorhizobium meliloti undergoes a profound cellular differentiation, including endoreduplication of the ome. The regulatory mechanisms governing the alterations of the S. meliloti cell cycle in planta are largely unknown. Here, we report the characterization of two cpdR homologues, cpdR1 and cpdR2, of S. meliloti that encode single-domain response regulators. In Caulobacter crescentus, CpdR controls the polar localization of the ClpXP protease, thereby mediating the regulated proteolysis of key protein(s), such as CtrA, involved in cell cycle progression. The S. meliloti cpdR1-null mutant can invade the host cytoplasm, however, the intracellular bacteria are unable to differentiate into bacteroids. We show that S. meliloti CpdR1 has a polar localization pattern and a role in ClpX positioning similar to C. crescentus CpdR, suggesting a conserved function of CpdR proteins among alpha-proteobacteria. However, in S. meliloti, free-living cells of the cpdR1-null mutant show a striking morphology of irregular coccoids and aberrant DNA replication. Thus, we demonstrate that CpdR1 mediates the co-ordination of cell cycle events, which are critical for both the free-living cell division and the differentiation required for the chronic intracellular infection.

摘要

ATP驱动的蛋白水解在调节细菌细胞周期、发育和应激反应中起主要作用。在与宿主植物的固氮共生关系中,苜蓿中华根瘤菌经历了深刻的细胞分化,包括基因组的核内复制。植物中调控苜蓿中华根瘤菌细胞周期变化的机制在很大程度上尚不清楚。在此,我们报道了苜蓿中华根瘤菌的两个cpdR同源物cpdR1和cpdR2的特征,它们编码单结构域应答调节因子。在新月柄杆菌中,CpdR控制ClpXP蛋白酶的极性定位,从而介导对参与细胞周期进程的关键蛋白(如CtrA)的调控蛋白水解。苜蓿中华根瘤菌cpdR1缺失突变体能够侵入宿主细胞质,然而,细胞内细菌无法分化为类菌体。我们表明,苜蓿中华根瘤菌CpdR1具有与新月柄杆菌CpdR相似的极性定位模式和在ClpX定位中的作用,这表明CpdR蛋白在α-变形菌中具有保守功能。然而,在苜蓿中华根瘤菌中,cpdR1缺失突变体的自由生活细胞呈现出不规则球菌的显著形态和异常的DNA复制。因此,我们证明CpdR1介导细胞周期事件的协调,这对于自由生活细胞分裂和慢性细胞内感染所需的分化都至关重要。

相似文献

1
Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection.
Mol Microbiol. 2009 Aug;73(4):586-600. doi: 10.1111/j.1365-2958.2009.06794.x. Epub 2009 Jul 7.
2
Sinorhizobium meliloti CtrA Stability Is Regulated in a CbrA-Dependent Manner That Is Influenced by CpdR1.
J Bacteriol. 2015 Jul;197(13):2139-2149. doi: 10.1128/JB.02593-14. Epub 2015 Apr 20.
3
Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti.
PLoS Genet. 2015 May 15;11(5):e1005232. doi: 10.1371/journal.pgen.1005232. eCollection 2015 May.
4
FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2412367122. doi: 10.1073/pnas.2412367122. Epub 2025 Mar 12.
5
The nitrogen-fixing symbiosis requires CbrA-dependent regulation of a DivL and CckA phosphorelay.
J Bacteriol. 2024 Oct 24;206(10):e0039923. doi: 10.1128/jb.00399-23. Epub 2024 Sep 24.
6
Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3217-24. doi: 10.1073/pnas.1400421111. Epub 2014 Feb 5.
7
A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti.
J Bacteriol. 2001 May;183(10):3204-10. doi: 10.1128/JB.183.10.3204-3210.2001.
9
Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3561-6. doi: 10.1073/pnas.1400450111. Epub 2014 Feb 5.
10
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
J Bacteriol. 2018 Jan 10;200(3). doi: 10.1128/JB.00501-17. Print 2018 Feb 1.

引用本文的文献

1
FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2412367122. doi: 10.1073/pnas.2412367122. Epub 2025 Mar 12.
2
The nitrogen-fixing symbiosis requires CbrA-dependent regulation of a DivL and CckA phosphorelay.
J Bacteriol. 2024 Oct 24;206(10):e0039923. doi: 10.1128/jb.00399-23. Epub 2024 Sep 24.
3
Transcriptome architecture of the three main lineages of agrobacteria.
mSystems. 2023 Aug 31;8(4):e0033323. doi: 10.1128/msystems.00333-23. Epub 2023 Jul 21.
6
RdsA Is a Global Regulator That Controls Cell Shape and Division in .
Front Microbiol. 2022 Apr 7;13:858440. doi: 10.3389/fmicb.2022.858440. eCollection 2022.
7
DNA Methylation in Species during Free-Living Growth and during Nitrogen-Fixing Symbiosis with spp.
mSystems. 2022 Feb 22;7(1):e0109221. doi: 10.1128/mSystems.01092-21. Epub 2022 Jan 4.
10
The Protease ClpXP and the PAS Domain Protein DivL Regulate CtrA and Gene Transfer Agent Production in Rhodobacter capsulatus.
Appl Environ Microbiol. 2018 May 17;84(11). doi: 10.1128/AEM.00275-18. Print 2018 Jun 1.

本文引用的文献

2
Molecular determinants of a symbiotic chronic infection.
Annu Rev Genet. 2008;42:413-41. doi: 10.1146/annurev.genet.42.110807.091427.
3
A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16602-7. doi: 10.1073/pnas.0808807105. Epub 2008 Oct 22.
4
Localization of general and regulatory proteolysis in Bacillus subtilis cells.
Mol Microbiol. 2008 Nov;70(3):682-94. doi: 10.1111/j.1365-2958.2008.06438.x. Epub 2008 Sep 10.
5
Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis.
J Bacteriol. 2008 Oct;190(20):6749-57. doi: 10.1128/JB.00589-08. Epub 2008 Aug 8.
6
Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis.
J Bacteriol. 2008 Oct;190(20):6758-68. doi: 10.1128/JB.00590-08. Epub 2008 Aug 8.
7
How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model.
Nat Rev Microbiol. 2007 Aug;5(8):619-33. doi: 10.1038/nrmicro1705.
8
Direct and adaptor-mediated substrate recognition by an essential AAA+ protease.
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6590-5. doi: 10.1073/pnas.0701776104. Epub 2007 Apr 9.
9
A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis.
Microbiology (Reading). 2007 Feb;153(Pt 2):375-387. doi: 10.1099/mic.0.2006/001362-0.
10
Regulation of the bacterial cell cycle by an integrated genetic circuit.
Nature. 2006 Dec 14;444(7121):899-904. doi: 10.1038/nature05321. Epub 2006 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验