Suppr超能文献

一种包含相关性、竞争性和拓扑性质的新型双向异联想记忆。

A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties.

作者信息

Chartier Sylvain, Giguère Gyslain, Langlois Dominic

机构信息

University of Ottawa, School of Psychology, 200 Lees E217, 125 University Street, Ottawa, ON K1N 6N5, Canada.

出版信息

Neural Netw. 2009 Jul-Aug;22(5-6):568-78. doi: 10.1016/j.neunet.2009.06.011. Epub 2009 Jun 30.

Abstract

In this paper, we present a new recurrent bidirectional model that encompasses correlational, competitive and topological model properties. The simultaneous use of many classes of network behaviors allows for the unsupervised learning/categorization of perceptual patterns (through input compression) and the concurrent encoding of proximities in a multidimensional space. All of these operations are achieved within a common learning operation, and using a single set of defining properties. It is shown that the model can learn categories by developing prototype representations strictly from exposition to specific exemplars. Moreover, because the model is recurrent, it can reconstruct perfect outputs from incomplete and noisy patterns. Empirical exploration of the model's properties and performance shows that its ability for adequate clustering stems from: (1) properly distributing connection weights, and (2) producing a weight space with a low dispersion level (or higher density). In addition, since the model uses a sparse representation (k-winners), the size of topological neighborhood can be fixed, and no longer requires a decrease through time as was the case with classic self-organizing feature maps. Since the model's learning and transmission parameters are independent from learning trials, the model can develop stable fixed points in a constrained topological architecture, while being flexible enough to learn novel patterns.

摘要

在本文中,我们提出了一种新的循环双向模型,该模型包含相关、竞争和拓扑模型属性。同时使用多种类型的网络行为允许对感知模式进行无监督学习/分类(通过输入压缩)以及在多维空间中对邻近性进行并发编码。所有这些操作都在一个共同的学习操作中实现,并使用一组单一的定义属性。结果表明,该模型可以通过严格从对特定示例的接触中发展出原型表示来学习类别。此外,由于该模型是循环的,它可以从不完整和有噪声的模式中重建完美的输出。对该模型的属性和性能的实证探索表明,其进行适当聚类的能力源于:(1)正确分布连接权重,以及(2)产生具有低分散水平(或更高密度)的权重空间。此外,由于该模型使用稀疏表示(k胜者),拓扑邻域的大小可以固定,不再需要像经典自组织特征映射那样随时间减小。由于该模型的学习和传输参数与学习试验无关,该模型可以在受限的拓扑架构中发展出稳定的不动点,同时具有足够的灵活性来学习新的模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验