Suppr超能文献

基于图形硬件的快速卷积叠加剂量计算。

Fast convolution-superposition dose calculation on graphics hardware.

作者信息

Hissoiny Sami, Ozell Benoît, Després Philippe

机构信息

Département de Génie Informatique et Génie Logiciel, Ecole Polytechnique de Montréal, 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.

出版信息

Med Phys. 2009 Jun;36(6):1998-2005. doi: 10.1118/1.3120286.

Abstract

The numerical calculation of dose is central to treatment planning in radiation therapy and is at the core of optimization strategies for modern delivery techniques. In a clinical environment, dose calculation algorithms are required to be accurate and fast. The accuracy is typically achieved through the integration of patient-specific data and extensive beam modeling, which generally results in slower algorithms. In order to alleviate execution speed problems, the authors have implemented a modern dose calculation algorithm on a massively parallel hardware architecture. More specifically, they have implemented a convolution-superposition photon beam dose calculation algorithm on a commodity graphics processing unit (GPU). They have investigated a simple porting scenario as well as slightly more complex GPU optimization strategies. They have achieved speed improvement factors ranging from 10 to 20 times with GPU implementations compared to central processing unit (CPU) implementations, with higher values corresponding to larger kernel and calculation grid sizes. In all cases, they preserved the numerical accuracy of the GPU calculations with respect to the CPU calculations. These results show that streaming architectures such as GPUs can significantly accelerate dose calculation algorithms and let envision benefits for numerically intensive processes such as optimizing strategies, in particular, for complex delivery techniques such as IMRT and are therapy.

摘要

剂量的数值计算是放射治疗治疗计划的核心,也是现代放疗技术优化策略的核心。在临床环境中,剂量计算算法需要准确且快速。准确性通常通过整合患者特定数据和广泛的射束建模来实现,这通常会导致算法速度变慢。为了缓解执行速度问题,作者在大规模并行硬件架构上实现了一种现代剂量计算算法。更具体地说,他们在商用图形处理单元(GPU)上实现了一种卷积叠加光子束剂量计算算法。他们研究了一种简单的移植方案以及稍微复杂一些的GPU优化策略。与中央处理器(CPU)实现相比,GPU实现的速度提升因子在10到20倍之间,较大的值对应于更大的内核和计算网格尺寸。在所有情况下,他们都保持了GPU计算相对于CPU计算的数值准确性。这些结果表明,诸如GPU之类的流架构可以显著加速剂量计算算法,并为诸如优化策略等数值密集型过程带来好处,特别是对于诸如调强放疗(IMRT)和弧形治疗等复杂的放疗技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验