Grabowsky Simon, Kalinowski Roman, Weber Manuela, Förster Diana, Paulmann Carsten, Luger Peter
Freie Universität Berlin, Institut für Chemie und Biochemie/Kristallographie, Fabeckstrasse 36a, 14195 Berlin, Germany.
Acta Crystallogr B. 2009 Aug;65(Pt 4):488-501. doi: 10.1107/S0108768109016966. Epub 2009 Jun 13.
In the last decade three different data bank approaches have been developed that are intended to make electron-density examinations of large biologically important molecules possible. They rely on Bader's concept of transferability of submolecular fragments with retention of their electronic properties. Therefore, elaborate studies on the quantification of transferability in experiment and theory are still very important. Tripeptides of the type L-alanyl-X-L-alanine (X being any of the 20 naturally encoded amino acids) serve as a model case between amino acids and proteins. The two experimental electron-density determinations (L-alanyl-L-histidinyl-L-alanine and L-alanyl-L-phenylalanyl-L-alanine, highly resolved synchrotron X-ray diffraction data sets) performed in this study and theoretical calculations on all 20 different L-alanyl-X-L-alanine molecules contribute to a better estimation of transferability in the peptide case. As a measure of reproducibility and transferability, standard deviations from averaging over bond-topological and atomic properties of atoms or bonds that are considered equal in their chemical environments were calculated. This way, transferability and reproducibility indices were introduced. It can be shown that experimental transferability indices generally slightly exceed experimental reproducibility indices and that these larger deviations can be attributed to chemical effects such as changes in the geometry (bond lengths and angles), the polarization pattern and the neighboring sphere due to crystal packing. These effects can partly be separated from each other and quantified with the help of gas-phase calculations at optimized and experimental geometries. Thus, the degree of transferability can be quantified in very narrow limits taking into account experimental errors and chemical effects.
在过去十年中,已经开发出三种不同的数据库方法,旨在使对具有重要生物学意义的大分子进行电子密度检测成为可能。它们依赖于巴德(Bader)提出的亚分子片段可转移性概念,即保留其电子性质。因此,在实验和理论方面对可转移性进行量化的详尽研究仍然非常重要。L-丙氨酰-X-L-丙氨酸类型的三肽(X为20种天然编码氨基酸中的任何一种)是氨基酸和蛋白质之间的一个典型例子。本研究中进行的两项实验电子密度测定(L-丙氨酰-L-组氨酰-L-丙氨酸和L-丙氨酰-L-苯丙氨酰-L-丙氨酸,高分辨率同步加速器X射线衍射数据集)以及对所有20种不同的L-丙氨酰-X-L-丙氨酸分子的理论计算,有助于更好地估计肽类情况下的可转移性。作为可重复性和可转移性的一种衡量标准,计算了在化学环境中被认为相等的原子或键的键拓扑和原子性质平均后的标准偏差。通过这种方式,引入了可转移性和可重复性指数。可以表明,实验性可转移性指数通常略高于实验性可重复性指数,并且这些较大的偏差可归因于化学效应,如由于晶体堆积导致的几何结构(键长和键角)、极化模式和相邻球壳的变化。这些效应可以部分地相互分离,并借助于在优化几何结构和实验几何结构下的气相计算进行量化。因此,考虑到实验误差和化学效应,可以在非常窄的范围内对可转移性程度进行量化。