Gallegos Miguel, Vassilev-Galindo Valentin, Poltavsky Igor, Martín Pendás Ángel, Tkatchenko Alexandre
Department of Analytical and Physical Chemistry, University of Oviedo, E-33006, Oviedo, Spain.
IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain.
Nat Commun. 2024 May 21;15(1):4345. doi: 10.1038/s41467-024-48567-9.
Machine-learned computational chemistry has led to a paradoxical situation in which molecular properties can be accurately predicted, but they are difficult to interpret. Explainable AI (XAI) tools can be used to analyze complex models, but they are highly dependent on the AI technique and the origin of the reference data. Alternatively, interpretable real-space tools can be employed directly, but they are often expensive to compute. To address this dilemma between explainability and accuracy, we developed SchNet4AIM, a SchNet-based architecture capable of dealing with local one-body (atomic) and two-body (interatomic) descriptors. The performance of SchNet4AIM is tested by predicting a wide collection of real-space quantities ranging from atomic charges and delocalization indices to pairwise interaction energies. The accuracy and speed of SchNet4AIM breaks the bottleneck that has prevented the use of real-space chemical descriptors in complex systems. We show that the group delocalization indices, arising from our physically rigorous atomistic predictions, provide reliable indicators of supramolecular binding events, thus contributing to the development of Explainable Chemical Artificial Intelligence (XCAI) models.
分子性质能够被精确预测,但却难以解释。可解释人工智能(XAI)工具可用于分析复杂模型,但其高度依赖于人工智能技术和参考数据的来源。另外,也可以直接使用可解释的实空间工具,但它们的计算成本通常很高。为了解决可解释性与准确性之间的这一困境,我们开发了SchNet4AIM,这是一种基于SchNet的架构,能够处理局部单体(原子)和二体(原子间)描述符。通过预测从原子电荷、离域指数到成对相互作用能等大量实空间量,对SchNet4AIM的性能进行了测试。SchNet4AIM的准确性和速度突破了阻碍在复杂系统中使用实空间化学描述符的瓶颈。我们表明,基于我们严格的物理原子预测得出的基团离域指数,为超分子结合事件提供了可靠的指标,从而有助于可解释化学人工智能(XCAI)模型的发展。