Suppr超能文献

基于实空间化学描述符的精确机器学习实现可解释的化学人工智能。

Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors.

作者信息

Gallegos Miguel, Vassilev-Galindo Valentin, Poltavsky Igor, Martín Pendás Ángel, Tkatchenko Alexandre

机构信息

Department of Analytical and Physical Chemistry, University of Oviedo, E-33006, Oviedo, Spain.

IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain.

出版信息

Nat Commun. 2024 May 21;15(1):4345. doi: 10.1038/s41467-024-48567-9.

Abstract

Machine-learned computational chemistry has led to a paradoxical situation in which molecular properties can be accurately predicted, but they are difficult to interpret. Explainable AI (XAI) tools can be used to analyze complex models, but they are highly dependent on the AI technique and the origin of the reference data. Alternatively, interpretable real-space tools can be employed directly, but they are often expensive to compute. To address this dilemma between explainability and accuracy, we developed SchNet4AIM, a SchNet-based architecture capable of dealing with local one-body (atomic) and two-body (interatomic) descriptors. The performance of SchNet4AIM is tested by predicting a wide collection of real-space quantities ranging from atomic charges and delocalization indices to pairwise interaction energies. The accuracy and speed of SchNet4AIM breaks the bottleneck that has prevented the use of real-space chemical descriptors in complex systems. We show that the group delocalization indices, arising from our physically rigorous atomistic predictions, provide reliable indicators of supramolecular binding events, thus contributing to the development of Explainable Chemical Artificial Intelligence (XCAI) models.

摘要

机器学习计算化学导致了一种自相矛盾的情况

分子性质能够被精确预测,但却难以解释。可解释人工智能(XAI)工具可用于分析复杂模型,但其高度依赖于人工智能技术和参考数据的来源。另外,也可以直接使用可解释的实空间工具,但它们的计算成本通常很高。为了解决可解释性与准确性之间的这一困境,我们开发了SchNet4AIM,这是一种基于SchNet的架构,能够处理局部单体(原子)和二体(原子间)描述符。通过预测从原子电荷、离域指数到成对相互作用能等大量实空间量,对SchNet4AIM的性能进行了测试。SchNet4AIM的准确性和速度突破了阻碍在复杂系统中使用实空间化学描述符的瓶颈。我们表明,基于我们严格的物理原子预测得出的基团离域指数,为超分子结合事件提供了可靠的指标,从而有助于可解释化学人工智能(XCAI)模型的发展。

相似文献

2
Explanatory pragmatism: a context-sensitive framework for explainable medical AI.
Ethics Inf Technol. 2022;24(1):13. doi: 10.1007/s10676-022-09632-3. Epub 2022 Feb 28.
3
Explainable AI: Machine Learning Interpretation in Blackcurrant Powders.
Sensors (Basel). 2024 May 17;24(10):3198. doi: 10.3390/s24103198.
4
Model-agnostic explainable artificial intelligence tools for severity prediction and symptom analysis on Indian COVID-19 data.
Front Artif Intell. 2023 Dec 4;6:1272506. doi: 10.3389/frai.2023.1272506. eCollection 2023.
5
DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence.
Comput Methods Programs Biomed. 2024 Jan;243:107879. doi: 10.1016/j.cmpb.2023.107879. Epub 2023 Oct 24.
6
The enlightening role of explainable artificial intelligence in medical & healthcare domains: A systematic literature review.
Comput Biol Med. 2023 Nov;166:107555. doi: 10.1016/j.compbiomed.2023.107555. Epub 2023 Oct 4.
7
Explainable AI for Bioinformatics: Methods, Tools and Applications.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad236.
8
Improvement of a prediction model for heart failure survival through explainable artificial intelligence.
Front Cardiovasc Med. 2023 Aug 1;10:1219586. doi: 10.3389/fcvm.2023.1219586. eCollection 2023.
9
Explainability and white box in drug discovery.
Chem Biol Drug Des. 2023 Jul;102(1):217-233. doi: 10.1111/cbdd.14262. Epub 2023 Apr 27.

引用本文的文献

4
5
Non-destructive measurement of eggshell strength using NIR spectroscopy and explainable artificial intelligence.
J Sci Food Agric. 2025 Aug 15;105(10):5550-5562. doi: 10.1002/jsfa.14290. Epub 2025 Apr 17.
6
Polarizable Water Model with Ab Initio Neural Network Dynamic Charges and Spontaneous Charge Transfer.
J Chem Theory Comput. 2025 Apr 8;21(7):3360-3373. doi: 10.1021/acs.jctc.4c01448. Epub 2025 Mar 29.
7
Analyzing Atomic Interactions in Molecules as Learned by Neural Networks.
J Chem Theory Comput. 2025 Jan 28;21(2):714-729. doi: 10.1021/acs.jctc.4c01424. Epub 2025 Jan 10.
8
Quantum Topological Atomic Properties of 44K molecules.
Sci Data. 2024 Aug 29;11(1):945. doi: 10.1038/s41597-024-03723-0.

本文引用的文献

1
A principal odor map unifies diverse tasks in olfactory perception.
Science. 2023 Sep;381(6661):999-1006. doi: 10.1126/science.ade4401. Epub 2023 Aug 31.
2
Atoms in molecules in real space: a fertile field for chemical bonding.
Phys Chem Chem Phys. 2023 Apr 12;25(15):10231-10262. doi: 10.1039/d2cp05540f.
3
Effective Molecular Dynamics from Neural Network-Based Structure Prediction Models.
J Chem Theory Comput. 2023 Apr 11;19(7):1965-1975. doi: 10.1021/acs.jctc.2c01027. Epub 2023 Mar 24.
4
Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor.
J Chem Theory Comput. 2023 Feb 14;19(3):705-712. doi: 10.1021/acs.jctc.2c00788. Epub 2023 Jan 25.
5
Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water.
J Chem Theory Comput. 2022 Sep 13;18(9):5577-5588. doi: 10.1021/acs.jctc.2c00311. Epub 2022 Aug 8.
6
Purely Covalent Molecular Cages and Containers for Guest Encapsulation.
Chem Rev. 2022 Aug 24;122(16):13636-13708. doi: 10.1021/acs.chemrev.2c00198. Epub 2022 Jul 22.
7
Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance.
Phys Chem Chem Phys. 2022 Aug 3;24(30):18028-18042. doi: 10.1039/d2cp02234f.
8
Quantum machine learning for chemistry and physics.
Chem Soc Rev. 2022 Aug 1;51(15):6475-6573. doi: 10.1039/d2cs00203e.
9
Fast Near Potential Energy Surfaces Using Machine Learning.
J Phys Chem A. 2022 Jun 30;126(25):4013-4024. doi: 10.1021/acs.jpca.2c02243. Epub 2022 Jun 17.
10
Exploring Potential Energy Surfaces Using Reinforcement Machine Learning.
J Chem Inf Model. 2022 Jul 11;62(13):3169-3179. doi: 10.1021/acs.jcim.2c00373. Epub 2022 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验