Roduit Charles, Sekatski Serguei, Dietler Giovanni, Catsicas Stefan, Lafont Frank, Kasas Sandor
Institut de Physique des Systèmes Biologiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Biophys J. 2009 Jul 22;97(2):674-7. doi: 10.1016/j.bpj.2009.05.010.
The atomic force microscope is a convenient tool to probe living samples at the nanometric scale. Among its numerous capabilities, the instrument can be operated as a nano-indenter to gather information about the mechanical properties of the sample. In this operating mode, the deformation of the cantilever is displayed as a function of the indentation depth of the tip into the sample. Fitting this curve with different theoretical models permits us to estimate the Young's modulus of the sample at the indentation spot. We describe what to our knowledge is a new technique to process these curves to distinguish structures of different stiffness buried into the bulk of the sample. The working principle of this new imaging technique has been verified by finite element models and successfully applied to living cells.
原子力显微镜是一种在纳米尺度探测活样品的便捷工具。在其众多功能中,该仪器可作为纳米压痕仪来收集有关样品机械性能的信息。在这种操作模式下,悬臂的变形显示为针尖压入样品的深度的函数。用不同的理论模型拟合此曲线,使我们能够估计压痕点处样品的杨氏模量。我们描述了一种据我们所知的处理这些曲线的新技术,以区分埋在样品主体中的不同刚度的结构。这种新成像技术的工作原理已通过有限元模型得到验证,并成功应用于活细胞。