Institute of Biophysics, University of Bremen, Bremen, Germany.
J Mol Recognit. 2023 Jul;36(7):e3018. doi: 10.1002/jmr.3018. Epub 2023 May 2.
We have measured the elastic properties of live cells by Atomic Force Microscope (AFM) using different tip geometries commonly used in AFM studies. Soft 4-sided pyramidal probes (spring constant = 12 and 30 mN/m, radius 20 nm), 3-sided pyramidal probes (spring constant = 100 mN/m, radius 65-75 nm), flat (circular) probes (spring constant = 63 mN/m, radius 290 nm) and spherical probes (spring constant = 43 mN/m, radius 5 μm) have been used. Cells (3T3 fibroblasts) having elastic moduli around 0.5 kPa were investigated. We found that cell measured stiffness shows a systematic dependence on tip geometry: the sharper the tip, the higher the average modulus values. We hypothesize that the blunter the tip, the larger the contact area over which the mechanical response is measured or averaged. If there are small-scale stiffer areas (like actin bundles) they will be easier to pick up by a sharp probe. This effect can be seen in the wider distribution of the histograms of the measured elastic moduli on cells. Furthermore, non-linear responses of cells may be present due to the high average pressures applied by sharp probes, which would lead to an overestimation of the Young's modulus. Pressure versus contact radius simulations for the different tip geometries for a 0.5 kPa sample suggested similar average pressure for Bio-MLCTs, PFQNM and cut tips, except spherical tips that showed much lower average pressure at the same 400 nm indentation. However, real data of the cells suggested different results. Using the same indentation depth (400 nm), PFQNM and Bio-MLCTs showed similar average pressure and it decreased for cut and spherical tips. The calculated contact area at 400 nm cell indentation, using the obtained apparent Young's modulus for each tip geometry, showed the following distribution: Bio-MLCTs < PFQNM < cut << spherical. In summary, tip geometry as well as average pressure and tip-sample contact area are important parameters to take into account when measuring mechanical properties of soft samples. The larger the tip radius, the larger the contact area that will lead to a more evenly distribution of the applied pressure.
我们使用原子力显微镜(AFM)测量了不同针尖几何形状的活细胞的弹性特性,这些针尖几何形状常用于 AFM 研究。使用了软 4 面金字塔形探针(弹性常数=12 和 30 mN/m,半径 20 nm)、3 面金字塔形探针(弹性常数=100 mN/m,半径 65-75nm)、平面(圆形)探针(弹性常数=63 mN/m,半径 290nm)和球形探针(弹性常数=43 mN/m,半径 5μm)。我们研究了弹性模量约为 0.5 kPa 的 3T3 成纤维细胞。我们发现,细胞测量的刚度显示出与针尖几何形状的系统依赖性:针尖越锋利,平均模量值越高。我们假设,针尖越钝,机械响应被测量或平均的接触面积就越大。如果存在较小的较硬区域(如肌动蛋白束),则较锋利的探针更容易检测到它们。这种效应可以在细胞的测量弹性模量直方图的更广泛分布中看到。此外,由于尖锐探针施加的平均压力较高,细胞可能会出现非线性响应,这将导致杨氏模量的高估。对于不同针尖几何形状的 0.5 kPa 样品的压力与接触半径模拟表明,对于 Bio-MLCTs、PFQNM 和切割尖端,平均压力相似,除了球形尖端,其在相同的 400nm 压痕下显示出低得多的平均压力。然而,细胞的实际数据给出了不同的结果。使用相同的压入深度(400nm),PFQNM 和 Bio-MLCTs 显示出相似的平均压力,而对于切割和球形尖端,平均压力降低。使用每种针尖几何形状获得的表观杨氏模量计算在 400nm 细胞压痕处的接触面积,得到以下分布:Bio-MLCTs<PFQNM<切割<<<球形。总之,针尖几何形状以及平均压力和针尖-样品接触面积是测量软样品机械性能时需要考虑的重要参数。针尖半径越大,接触面积越大,这将导致施加压力更均匀地分布。