Flatt Thomas, Schmidt Paul S
Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Josef Baumann Gasse 1, A-1210 Wien, Austria.
Biochim Biophys Acta. 2009 Oct;1790(10):951-62. doi: 10.1016/j.bbagen.2009.07.010. Epub 2009 Jul 18.
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.
衰老或老化是一种与年龄相关的生理功能衰退,从人口统计学角度表现为随着年龄增长存活率和繁殖力下降。由于衰老不利,它不应通过自然选择进化而来。那么,为什么生物体会衰老和死亡呢?在20世纪40年代和50年代,进化遗传学家通过假定衰老的进化是因为选择在维持生命后期的功能方面效率低下,从而解决了这一悖论。到了20世纪80年代和90年代,这种衰老的进化理论得到了确凿的实证支持,但对衰老机制却知之甚少。大约在同一时期,生物学家开始将分子遗传学工具应用于衰老研究,并成功鉴定出影响寿命的突变。如今,衰老的分子遗传学是一个蓬勃发展的领域,但衰老的进化遗传学进展在很大程度上陷入了停滞。在此,我们认为一些关于衰老最令人兴奋且尚未解决的问题需要整合分子和进化方法。衰老是一个普遍的过程吗?为什么不同物种衰老的速度不同?衰老机制是保守的还是特定谱系的?在实验室中鉴定出的长寿基因在自然种群中是否受到选择?衰老对环境线索作出反应的可塑性的遗传基础是什么,以及这种可塑性是否具有适应性?早期适应性性状与寿命之间权衡的潜在机制是什么?为了回答这些问题,进化生物学家必须采用分子生物学工具,而分子生物学家必须将他们的实验置于进化框架中。现在是综合分子生物老年学和衰老进化生物学的时候了。