Suppr超能文献

整合衰老的进化遗传学与分子遗传学。

Integrating evolutionary and molecular genetics of aging.

作者信息

Flatt Thomas, Schmidt Paul S

机构信息

Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Josef Baumann Gasse 1, A-1210 Wien, Austria.

出版信息

Biochim Biophys Acta. 2009 Oct;1790(10):951-62. doi: 10.1016/j.bbagen.2009.07.010. Epub 2009 Jul 18.

Abstract

Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.

摘要

衰老或老化是一种与年龄相关的生理功能衰退,从人口统计学角度表现为随着年龄增长存活率和繁殖力下降。由于衰老不利,它不应通过自然选择进化而来。那么,为什么生物体会衰老和死亡呢?在20世纪40年代和50年代,进化遗传学家通过假定衰老的进化是因为选择在维持生命后期的功能方面效率低下,从而解决了这一悖论。到了20世纪80年代和90年代,这种衰老的进化理论得到了确凿的实证支持,但对衰老机制却知之甚少。大约在同一时期,生物学家开始将分子遗传学工具应用于衰老研究,并成功鉴定出影响寿命的突变。如今,衰老的分子遗传学是一个蓬勃发展的领域,但衰老的进化遗传学进展在很大程度上陷入了停滞。在此,我们认为一些关于衰老最令人兴奋且尚未解决的问题需要整合分子和进化方法。衰老是一个普遍的过程吗?为什么不同物种衰老的速度不同?衰老机制是保守的还是特定谱系的?在实验室中鉴定出的长寿基因在自然种群中是否受到选择?衰老对环境线索作出反应的可塑性的遗传基础是什么,以及这种可塑性是否具有适应性?早期适应性性状与寿命之间权衡的潜在机制是什么?为了回答这些问题,进化生物学家必须采用分子生物学工具,而分子生物学家必须将他们的实验置于进化框架中。现在是综合分子生物老年学和衰老进化生物学的时候了。

相似文献

1
Integrating evolutionary and molecular genetics of aging.
Biochim Biophys Acta. 2009 Oct;1790(10):951-62. doi: 10.1016/j.bbagen.2009.07.010. Epub 2009 Jul 18.
2
Horizons in the evolution of aging.
BMC Biol. 2018 Aug 20;16(1):93. doi: 10.1186/s12915-018-0562-z.
3
Universality and predictability in molecular quantitative genetics.
Curr Opin Genet Dev. 2013 Dec;23(6):684-93. doi: 10.1016/j.gde.2013.11.001. Epub 2013 Nov 28.
4
A scenario for an evolutionary selection of ageing.
Elife. 2024 Nov 1;13:RP92914. doi: 10.7554/eLife.92914.
5
Mutation and the evolution of ageing: from biometrics to system genetics.
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1273-9. doi: 10.1098/rstb.2009.0265.
6
What evolutionary biology can do for gerontology.
J Gerontol. 1989 Mar;44(2):B27-9. doi: 10.1093/geronj/44.2.b27.
7
From microbes to mammals: The experimental evolution of aging and longevity across species.
Evolution. 2022 Apr;76(4):692-707. doi: 10.1111/evo.14442. Epub 2022 Feb 12.
8
Genetic approaches in comparative and evolutionary physiology.
Am J Physiol Regul Integr Comp Physiol. 2015 Aug 1;309(3):R197-214. doi: 10.1152/ajpregu.00100.2015. Epub 2015 Jun 3.
9
What Is Antagonistic Pleiotropy?
Biochemistry (Mosc). 2019 Dec;84(12):1458-1468. doi: 10.1134/S0006297919120058.
10
Evolutionary genetic bases of longevity and senescence.
Adv Exp Med Biol. 2015;847:1-44. doi: 10.1007/978-1-4939-2404-2_1.

引用本文的文献

3
Microbes are potential key players in the evolution of life histories and aging in .
Ecol Evol. 2023 Sep 25;13(9):e10537. doi: 10.1002/ece3.10537. eCollection 2023 Sep.
5
Comparative genomics of mortal and immortal cnidarians unveils novel keys behind rejuvenation.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2118763119. doi: 10.1073/pnas.2118763119. Epub 2022 Aug 29.
6
Semelparous Death as one Element of Iteroparous Aging Gone Large.
Front Genet. 2022 Jun 9;13:880343. doi: 10.3389/fgene.2022.880343. eCollection 2022.
7
The selection force weakens with age because ageing evolves and not vice versa.
Nat Commun. 2022 Feb 3;13(1):686. doi: 10.1038/s41467-022-28254-3.
9
Medawar and Hamilton on the selective forces in the evolution of ageing.
Hist Philos Life Sci. 2021 Nov 25;43(4):124. doi: 10.1007/s40656-021-00476-6.
10
Modeling aging and its impact on cellular function and organismal behavior.
Exp Gerontol. 2021 Nov;155:111577. doi: 10.1016/j.exger.2021.111577. Epub 2021 Sep 26.

本文引用的文献

1
DOES INCREASED MORTALITY FAVOR THE EVOLUTION OF MORE RAPID SENESCENCE?
Evolution. 1993 Jun;47(3):877-887. doi: 10.1111/j.1558-5646.1993.tb01241.x.
2
THE EVOLUTION OF GENETIC CORRELATIONS: AN ANALYSIS OF PATTERNS.
Evolution. 1996 Aug;50(4):1392-1403. doi: 10.1111/j.1558-5646.1996.tb03913.x.
3
DIRECT SELECTION ON LIFE SPAN IN DROSOPHILA MELANOGASTER.
Evolution. 1995 Aug;49(4):649-659. doi: 10.1111/j.1558-5646.1995.tb02301.x.
4
THE EVOLUTIONARY GENETICS OF MALE LIFE-HISTORY CHARACTERS IN DROSOPHILA MELANOGASTER.
Evolution. 1995 Jun;49(3):521-537. doi: 10.1111/j.1558-5646.1995.tb02284.x.
5
DIRECT AND CORRELATED RESPONSES TO SELECTION ON AGE AT REPRODUCTION IN DROSOPHILA MELANOGASTER.
Evolution. 1992 Feb;46(1):76-91. doi: 10.1111/j.1558-5646.1992.tb01986.x.
6
SENESCENCE IN NATURAL POPULATIONS OF MAMMALS: A COMPARATIVE STUDY.
Evolution. 1991 Dec;45(8):1869-1887. doi: 10.1111/j.1558-5646.1991.tb02693.x.
7
LABORATORY EVOLUTION OF POSTPONED SENESCENCE IN DROSOPHILA MELANOGASTER.
Evolution. 1984 Sep;38(5):1004-1010. doi: 10.1111/j.1558-5646.1984.tb00370.x.
8
SELECTION FOR DELAYED SENESCENCE IN DROSOPHILA MELANOGASTER.
Evolution. 1984 Sep;38(5):996-1003. doi: 10.1111/j.1558-5646.1984.tb00369.x.
10
Extreme-longevity mutations orchestrate silencing of multiple signaling pathways.
Biochim Biophys Acta. 2009 Oct;1790(10):1075-83. doi: 10.1016/j.bbagen.2009.05.011. Epub 2009 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验