Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands.
Neural Netw. 2009 Nov;22(9):1278-85. doi: 10.1016/j.neunet.2009.06.035. Epub 2009 Jul 2.
It is shown how two of the most common types of feature mapping used for classification of single trial Electroencephalography (EEG), i.e. spatial and frequency filtering, can be equivalently performed as linear operations in the space of frequency-specific detector covariance tensors. Thus by first mapping the data to this space, a simple linear classifier can directly learn optimal spatial + frequency filters. Significantly, if the classifier's loss function is convex, learning these filters is a convex minimisation problem. It is also shown how to pre-process the data such that the resulting decision function is robust to the biases inherent in EEG data. Further, based upon ideas from Max Margin Matrix Factorisation, it is shown how the trace norm can be used to select solutions which have low rank. Low rank solutions are preferred as they reflect prior information about the types of EEG signals we expect to see, i.e. that the classifiable information is contained in only a few spatio/spectral pairs. They are also easier to interpret. This feature-space transformation is compared with the Common-Spatial-Patterns on simulated and real Imagined Movement Brain Computer Interface (BCI) data and shown to give state-of-the-art performance.
本文展示了两种最常见的用于单试脑电 (EEG) 分类的特征映射方法,即空间和频率滤波,如何在频域特定探测器协方差张量的空间中等效地进行线性运算。因此,通过首先将数据映射到这个空间,一个简单的线性分类器可以直接学习最优的空间+频率滤波器。重要的是,如果分类器的损失函数是凸的,那么学习这些滤波器就是一个凸的最小化问题。本文还展示了如何对数据进行预处理,以使得到的决策函数对 EEG 数据固有的偏差具有鲁棒性。此外,基于最大边缘矩阵分解的思想,本文展示了如何使用迹范数来选择具有低秩的解。低秩解是优选的,因为它们反映了我们期望看到的 EEG 信号类型的先验信息,即可分类信息仅包含少数空间/频谱对。它们也更容易解释。与模拟和真实想象运动脑机接口 (BCI) 数据上的共同空间模式相比,这种特征空间变换被证明具有最先进的性能。