Suppr超能文献

皮肤镜图像中的近似病变定位。

Approximate lesion localization in dermoscopy images.

作者信息

Celebi M Emre, Iyatomi Hitoshi, Schaefer Gerald, Stoecker William V

机构信息

Department of Computer Science, Louisiana State University, Technology Center 206, One University Place, Shreveport, LA 71115, USA.

出版信息

Skin Res Technol. 2009 Aug;15(3):314-22. doi: 10.1111/j.1600-0846.2009.00357.x.

Abstract

BACKGROUND

Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Because of the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis.

METHODS

In this article, we present an approximate lesion localization method that serves as a preprocessing step for detecting borders in dermoscopy images. In this method, first the black frame around the image is removed using an iterative algorithm. The approximate location of the lesion is then determined using an ensemble of thresholding algorithms.

RESULTS

The method is tested on a set of 428 dermoscopy images. The localization error is quantified by a metric that uses dermatologist-determined borders as the ground truth.

CONCLUSION

The results demonstrate that the method presented here achieves both fast and accurate localization of lesions in dermoscopy images.

摘要

背景

皮肤镜检查是用于诊断黑色素瘤和其他色素沉着性皮肤病变的主要成像方式之一。由于人工解读存在困难且具有主观性,皮肤镜图像的自动分析已成为一个重要的研究领域。边界检测通常是该分析的第一步。

方法

在本文中,我们提出了一种近似病变定位方法,作为检测皮肤镜图像边界的预处理步骤。在该方法中,首先使用迭代算法去除图像周围的黑色边框。然后使用一组阈值算法确定病变的近似位置。

结果

该方法在一组428张皮肤镜图像上进行了测试。定位误差通过一种将皮肤科医生确定的边界作为真实标准的指标进行量化。

结论

结果表明,本文提出的方法在皮肤镜图像中实现了病变的快速准确定位。

相似文献

1
Approximate lesion localization in dermoscopy images.皮肤镜图像中的近似病变定位。
Skin Res Technol. 2009 Aug;15(3):314-22. doi: 10.1111/j.1600-0846.2009.00357.x.
2
Objective evaluation of methods for border detection in dermoscopy images.皮肤镜图像中边界检测方法的客观评估。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3056-9. doi: 10.1109/IEMBS.2008.4649848.
4
Fast density-based lesion detection in dermoscopy images.快速基于密度的皮肤镜图像病灶检测。
Comput Med Imaging Graph. 2011 Mar;35(2):128-36. doi: 10.1016/j.compmedimag.2010.07.007. Epub 2010 Sep 17.
8
Lesion border detection in dermoscopy images.皮肤镜图像中的病变边界检测
Comput Med Imaging Graph. 2009 Mar;33(2):148-53. doi: 10.1016/j.compmedimag.2008.11.002. Epub 2009 Jan 3.
9
A methodological approach to the classification of dermoscopy images.一种皮肤镜图像分类的方法学途径。
Comput Med Imaging Graph. 2007 Sep;31(6):362-73. doi: 10.1016/j.compmedimag.2007.01.003. Epub 2007 Mar 26.

本文引用的文献

2
A new criterion for automatic multilevel thresholding.一种新的自动多级阈值化准则。
IEEE Trans Image Process. 1995;4(3):370-8. doi: 10.1109/83.366472.
3
Cancer statistics, 2008.2008年癌症统计数据。
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
4
Unsupervised border detection in dermoscopy images.皮肤镜图像中的无监督边界检测。
Skin Res Technol. 2007 Nov;13(4):454-62. doi: 10.1111/j.1600-0846.2007.00251.x.
9
Techniques for a structural analysis of dermatoscopic imagery.皮肤镜图像结构分析技术。
Comput Med Imaging Graph. 1998 Sep-Oct;22(5):375-89. doi: 10.1016/s0895-6111(98)00048-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验