Suppr超能文献

一种改进的用于皮肤镜图像边界检测的客观评价指标。

An improved objective evaluation measure for border detection in dermoscopy images.

机构信息

Department of Computer Science, Louisiana State University, Shreveport, LA, USA.

出版信息

Skin Res Technol. 2009 Nov;15(4):444-50. doi: 10.1111/j.1600-0846.2009.00387.x.

Abstract

BACKGROUND

Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Owing to the difficulty and subjectivity of human interpretation, dermoscopy image analysis has become an important research area. One of the most important steps in dermoscopy image analysis is the automated detection of lesion borders. Although numerous methods have been developed for the detection of lesion borders, very few studies were comprehensive in the evaluation of their results.

METHODS

In this paper, we evaluate five recent border detection methods on a set of 90 dermoscopy images using three sets of dermatologist-drawn borders as the ground truth. In contrast to previous work, we utilize an objective measure, the normalized probabilistic rand index, which takes into account the variations in the ground-truth images.

CONCLUSION

The results demonstrate that the differences between four of the evaluated border detection methods are in fact smaller than those predicted by the commonly used exclusive-OR measure.

摘要

背景

皮肤镜检查是诊断黑色素瘤和其他色素性皮肤病变的主要成像方式之一。由于人类解释的难度和主观性,皮肤镜图像分析已成为一个重要的研究领域。皮肤镜图像分析中最重要的步骤之一是自动检测病变边界。尽管已经开发了许多用于检测病变边界的方法,但很少有研究全面评估其结果。

方法

在本文中,我们使用三组皮肤科医生绘制的边界作为真实边界,在 90 张皮肤镜图像上评估了五种最新的边界检测方法。与之前的工作不同,我们使用了一种客观的度量标准,归一化概率 Rand 指数,它考虑了真实边界图像的变化。

结论

结果表明,评估的四种边界检测方法之间的差异实际上比常用的“异或”度量所预测的要小。

相似文献

2
Objective evaluation of methods for border detection in dermoscopy images.皮肤镜图像中边界检测方法的客观评估。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3056-9. doi: 10.1109/IEMBS.2008.4649848.
3
Density-based parallel skin lesion border detection with webCL.基于密度的并行皮肤病变边界检测与WebCL技术
BMC Bioinformatics. 2015;16 Suppl 13(Suppl 13):S5. doi: 10.1186/1471-2105-16-S13-S5. Epub 2015 Sep 25.
5
Lesion border detection in dermoscopy images.皮肤镜图像中的病变边界检测
Comput Med Imaging Graph. 2009 Mar;33(2):148-53. doi: 10.1016/j.compmedimag.2008.11.002. Epub 2009 Jan 3.
6
Fast density-based lesion detection in dermoscopy images.快速基于密度的皮肤镜图像病灶检测。
Comput Med Imaging Graph. 2011 Mar;35(2):128-36. doi: 10.1016/j.compmedimag.2010.07.007. Epub 2010 Sep 17.
8
Approximate lesion localization in dermoscopy images.皮肤镜图像中的近似病变定位。
Skin Res Technol. 2009 Aug;15(3):314-22. doi: 10.1111/j.1600-0846.2009.00357.x.
9
An improved border detection in dermoscopy images for density based clustering.基于密度聚类的皮肤镜图像边界检测改进。
BMC Bioinformatics. 2011 Oct 18;12 Suppl 10(Suppl 10):S12. doi: 10.1186/1471-2105-12-S10-S12.

本文引用的文献

2
Lesion border detection in dermoscopy images.皮肤镜图像中的病变边界检测
Comput Med Imaging Graph. 2009 Mar;33(2):148-53. doi: 10.1016/j.compmedimag.2008.11.002. Epub 2009 Jan 3.
3
Automatic detection of blue-white veil and related structures in dermoscopy images.皮肤镜图像中蓝白幕及相关结构的自动检测
Comput Med Imaging Graph. 2008 Dec;32(8):670-7. doi: 10.1016/j.compmedimag.2008.08.003. Epub 2008 Sep 19.
5
Cancer statistics, 2008.2008年癌症统计数据。
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
6
Independent histogram pursuit for segmentation of skin lesions.用于皮肤病变分割的独立直方图追踪
IEEE Trans Biomed Eng. 2008 Jan;55(1):157-61. doi: 10.1109/TBME.2007.910651.
8
Unsupervised border detection in dermoscopy images.皮肤镜图像中的无监督边界检测。
Skin Res Technol. 2007 Nov;13(4):454-62. doi: 10.1111/j.1600-0846.2007.00251.x.
9
Toward objective evaluation of image segmentation algorithms.迈向图像分割算法的客观评估
IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):929-44. doi: 10.1109/TPAMI.2007.1046.
10
A methodological approach to the classification of dermoscopy images.一种皮肤镜图像分类的方法学途径。
Comput Med Imaging Graph. 2007 Sep;31(6):362-73. doi: 10.1016/j.compmedimag.2007.01.003. Epub 2007 Mar 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验