Suppr超能文献

甲醛诱导的 DNA-蛋白质交联的 DNA 修复和损伤耐受的细胞途径。

Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks.

机构信息

Department of Molecular and Medical Genetics, Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, 97239, USA.

出版信息

DNA Repair (Amst). 2009 Oct 2;8(10):1207-14. doi: 10.1016/j.dnarep.2009.06.007. Epub 2009 Jul 21.

Abstract

Although it is well established that DNA-protein crosslinks are formed as a consequence of cellular exposure to agents such as formaldehyde, transplatin, ionizing and ultraviolet radiation, the biochemical pathways that promote cellular survival via repair or tolerance of these lesions are poorly understood. To investigate the mechanisms that function to limit DNA-protein crosslink-induced cytotoxicity, the Saccharomyces cerevisiae non-essential gene deletion library was screened for increased sensitivity to formaldehyde exposure. Following low dose, chronic exposure, strains containing deletions in genes mediating homologous recombination showed the greatest sensitivity, while under the same exposure conditions, deletions in genes associated with nucleotide excision repair conferred only low to moderate sensitivities. However, when the exposure regime was changed to a high dose acute (short-term) formaldehyde treatment, the genes that conferred maximal survival switched to the nucleotide excision repair pathway, with little contribution of the homologous recombination genes. Data are presented which suggest that following acute formaldehyde exposure, repair and/or tolerance of DNA-protein crosslinks proceeds via formation of nucleotide excision repair-dependent single-strand break intermediates and without a detectable accumulation of double-strand breaks. These data clearly demonstrate a differential pathway response to chronic versus acute formaldehyde exposures and may have significance and implications for risk extrapolation in human exposure studies.

摘要

尽管已经确定 DNA-蛋白质交联是细胞暴露于甲醛、顺铂、电离和紫外线辐射等物质的后果,但促进细胞通过修复或耐受这些损伤而存活的生化途径仍知之甚少。为了研究限制 DNA-蛋白质交联诱导的细胞毒性的机制,筛选了酿酒酵母非必需基因缺失文库,以寻找对甲醛暴露增加的敏感性。在低剂量、慢性暴露后,含有介导同源重组的基因缺失的菌株对甲醛暴露表现出最大的敏感性,而在相同的暴露条件下,与核苷酸切除修复相关的基因缺失仅赋予低至中度的敏感性。然而,当暴露方案改为高剂量急性(短期)甲醛处理时,赋予最大存活率的基因切换到核苷酸切除修复途径,同源重组基因的贡献很小。提供的数据表明,在急性甲醛暴露后,DNA-蛋白质交联的修复和/或耐受通过形成核苷酸切除修复依赖性单链断裂中间体进行,而没有双链断裂的可检测积累。这些数据清楚地表明,对慢性与急性甲醛暴露的途径反应存在差异,并且可能对人类暴露研究中的风险推断具有意义和影响。

相似文献

1
Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks.
DNA Repair (Amst). 2009 Oct 2;8(10):1207-14. doi: 10.1016/j.dnarep.2009.06.007. Epub 2009 Jul 21.
4
An RNAi screen in human cell lines reveals conserved DNA damage repair pathways that mitigate formaldehyde sensitivity.
DNA Repair (Amst). 2018 Dec;72:1-9. doi: 10.1016/j.dnarep.2018.10.002. Epub 2018 Oct 9.
5
Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae.
Mol Cell Biol. 2000 May;20(10):3425-33. doi: 10.1128/MCB.20.10.3425-3433.2000.
6
DNA interstrand cross-link repair in Saccharomyces cerevisiae.
FEMS Microbiol Rev. 2007 Mar;31(2):109-33. doi: 10.1111/j.1574-6976.2006.00046.x. Epub 2006 Nov 9.
7
Inhibition of DNA double-strand break repair by the Ku heterodimer in mrx mutants of Saccharomyces cerevisiae.
DNA Repair (Amst). 2009 Feb 1;8(2):162-9. doi: 10.1016/j.dnarep.2008.09.010. Epub 2008 Nov 18.
8
9
Genetic investigation of formaldehyde-induced DNA damage response in Schizosaccharomyces pombe.
Curr Genet. 2020 Jun;66(3):593-605. doi: 10.1007/s00294-020-01057-z. Epub 2020 Feb 7.
10
Homologous recombination rescues ssDNA gaps generated by nucleotide excision repair and reduced translesion DNA synthesis in yeast G2 cells.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):E2895-904. doi: 10.1073/pnas.1301676110. Epub 2013 Jul 15.

引用本文的文献

2
Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyae213.
3
Aldehyde-induced DNA-protein crosslinks- DNA damage, repair and mutagenesis.
Front Oncol. 2024 Sep 12;14:1478373. doi: 10.3389/fonc.2024.1478373. eCollection 2024.
4
Isolation and detection of DNA-protein crosslinks in mammalian cells.
Nucleic Acids Res. 2024 Jan 25;52(2):525-547. doi: 10.1093/nar/gkad1178.
5
Ubiquitin signaling and the proteasome drive human DNA-protein crosslink repair.
Nucleic Acids Res. 2023 Dec 11;51(22):12174-12184. doi: 10.1093/nar/gkad860.
6
Abasic site-peptide cross-links are blocking lesions repaired by AP endonucleases.
Nucleic Acids Res. 2023 Jul 7;51(12):6321-6336. doi: 10.1093/nar/gkad423.
7
Ubx5-Cdc48 assists the protease Wss1 at DNA-protein crosslink sites in yeast.
EMBO J. 2023 Jul 3;42(13):e113609. doi: 10.15252/embj.2023113609. Epub 2023 May 5.
8
Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in .
ACS Synth Biol. 2022 Aug 19;11(8):2548-2563. doi: 10.1021/acssynbio.2c00110. Epub 2022 Jul 17.
9
Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease.
Front Mol Biosci. 2022 Jun 15;9:916697. doi: 10.3389/fmolb.2022.916697. eCollection 2022.
10
The protease SPRTN and SUMOylation coordinate DNA-protein crosslink repair to prevent genome instability.
Cell Rep. 2021 Dec 7;37(10):110080. doi: 10.1016/j.celrep.2021.110080.

本文引用的文献

1
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing.
Nature. 2008 Oct 9;455(7214):770-4. doi: 10.1038/nature07312. Epub 2008 Sep 21.
2
Genome-wide generation of yeast gene deletion strains.
Comp Funct Genomics. 2001;2(4):236-42. doi: 10.1002/cfg.95.
3
Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?
Trends Genet. 2008 Feb;24(2):70-6. doi: 10.1016/j.tig.2007.11.003. Epub 2008 Jan 14.
4
Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.
Cancer Res. 2007 Dec 1;67(23):11117-22. doi: 10.1158/0008-5472.CAN-07-3028.
6
Nucleotide excision repair eliminates unique DNA-protein cross-links from mammalian cells.
J Biol Chem. 2007 Aug 3;282(31):22592-604. doi: 10.1074/jbc.M702856200. Epub 2007 May 16.
7
The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae.
PLoS Genet. 2006 Nov 10;2(11):e194. doi: 10.1371/journal.pgen.0020194. Epub 2006 Oct 5.
8
Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock.
Mol Biol Cell. 2006 Oct;17(10):4584-91. doi: 10.1091/mbc.e06-05-0475. Epub 2006 Aug 9.
9
Repair of DNA-polypeptide crosslinks by human excision nuclease.
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4056-61. doi: 10.1073/pnas.0600538103. Epub 2006 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验