Suppr超能文献

ADP-葡萄糖焦磷酸化酶亚基的系统发育分析揭示了亚基界面在该酶变构特性中的作用。

Phylogenetic analysis of ADP-glucose pyrophosphorylase subunits reveals a role of subunit interfaces in the allosteric properties of the enzyme.

作者信息

Georgelis Nikolaos, Shaw Janine R, Hannah L Curtis

机构信息

Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, Florida 32610-0245, USA.

出版信息

Plant Physiol. 2009 Sep;151(1):67-77. doi: 10.1104/pp.109.138933. Epub 2009 Jul 22.

Abstract

ADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties. Amino acid changes that could account for these differences were identified previously by evolutionary analysis. In this study, these large subunit residues were mapped onto a modeled structure of the maize (Zea mays) endosperm enzyme. Surprisingly, of 29 amino acids identified via evolutionary considerations, 17 were located at subunit interfaces. Fourteen of the 29 amino acids were mutagenized in the maize endosperm large subunit (SHRUNKEN-2 [SH2]), and resulting variants were expressed in Escherichia coli with the maize endosperm small subunit (BT2). Comparisons of the amount of glycogen produced in E. coli, and the kinetic and allosteric properties of the variants with wild-type SH2/BT2, indicate that 11 variants differ from the wild type in enzyme properties or in vivo glycogen level. More interestingly, six of nine residues located at subunit interfaces exhibit altered allosteric properties. These results indicate that the interfaces between the large and small subunits are important for the allosteric properties of AGPase, and changes at these interfaces contribute to AGPase functional specialization. Our results also demonstrate that evolutionary analysis can greatly facilitate enzyme structure-function analyses.

摘要

ADP - 葡萄糖焦磷酸化酶(AGPase)分别催化细菌和植物中糖原与淀粉合成的限速步骤。植物AGPase由通过基因复制产生的两个大亚基和两个小亚基组成。AGPase大亚基在功能上已经发生分化,导致了不同的动力学和别构性质。先前通过进化分析确定了可能导致这些差异的氨基酸变化。在本研究中,将这些大亚基残基定位到玉米(Zea mays)胚乳酶的模型结构上。令人惊讶的是,通过进化分析确定的29个氨基酸中,有17个位于亚基界面。在玉米胚乳大亚基(皱缩2 [SH2])中对29个氨基酸中的14个进行了诱变,并将产生的变体与玉米胚乳小亚基(BT2)一起在大肠杆菌中表达。比较大肠杆菌中产生的糖原量以及变体与野生型SH2/BT2的动力学和别构性质,表明11个变体在酶性质或体内糖原水平上与野生型不同。更有趣的是,位于亚基界面的9个残基中有6个表现出别构性质的改变。这些结果表明,大亚基和小亚基之间的界面对于AGPase的别构性质很重要,并且这些界面处的变化有助于AGPase功能特化。我们的结果还表明,进化分析可以极大地促进酶的结构 - 功能分析。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验