Murr L E, Quinones S A, Gaytan S M, Lopez M I, Rodela A, Martinez E Y, Hernandez D H, Martinez E, Medina F, Wicker R B
Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
J Mech Behav Biomed Mater. 2009 Jan;2(1):20-32. doi: 10.1016/j.jmbbm.2008.05.004. Epub 2008 May 29.
The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti-6Al-4V. Microstructures are characterized utilizing optical metallography (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and included alpha (hcp), beta (bcc) and alpha(') (hcp) martensite phase regimes which give rise to hardness variations ranging from HRC 37 to 57 and tensile strengths ranging from 0.9 to 1.45 GPa. The advantages and disadvantages of layered manufacturing utilizing initial powders in custom building of biomedical components by EBM and SLM in contrast to conventional manufacturing from Ti-6Al-4V wrought bar stock are discussed.
将采用电子束熔炼(EBM)工艺和选择性激光熔化(SLM)工艺进行增材制造所生产的简单产品几何形状的微观结构和力学行为,与传统锻造和铸造的Ti-6Al-4V产品的特征进行了比较。利用光学金相显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对微观结构进行了表征,其中包括α(密排六方)、β(体心立方)和α'(密排六方)马氏体相区,这些相区导致硬度在HRC 37至57之间变化,抗拉强度在0.9至1.45 GPa之间变化。讨论了与由Ti-6Al-4V锻造棒材进行传统制造相比,在通过EBM和SLM定制制造生物医学部件时利用初始粉末进行增材制造的优缺点。