Wilkes R, Zhao Y, Cunningham K, Kieswetter K, Haridas B
Kinetic Concepts, Inc., San Antonio, TX 78249, United States.
J Mech Behav Biomed Mater. 2009 Jul;2(3):272-87. doi: 10.1016/j.jmbbm.2008.10.006. Epub 2008 Nov 5.
This study describes a novel system for acquiring the 3D strain field in soft tissue at sub-millimeter spatial resolution during negative pressure wound therapy (NPWT). Recent research in advanced wound treatment modalities theorizes that microdeformations induced by the application of sub-atmospheric (negative) pressure through V.A.C. GranuFoam Dressing, a reticulated open-cell polyurethane foam (ROCF), is instrumental in regulating the mechanobiology of granulation tissue formation [Saxena, V., Hwang, C.W., Huang, S., Eichbaum, Q., Ingber, D., Orgill, D.P., 2004. Vacuum-assisted closure: Microdeformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114, 1086-1096]. While the clinical response is unequivocal, measurement of deformations at the wound-dressing interface has not been possible due to the inaccessibility of the wound tissue beneath the sealed dressing. Here we describe the development of a bench-test wound model for microcomputed tomography (microCT) imaging of deformation induced by NPWT and an algorithm set for quantifying the 3D strain field at sub-millimeter resolution. Microdeformations induced in the tissue phantom revealed average tensile strains of 18%-23% at sub-atmospheric pressures of -50 to -200 mmHg (-6.7 to -26.7 kPa). The compressive strains (22%-24%) and shear strains (20%-23%) correlate with 2D FEM studies of microdeformational wound therapy in the reference cited above. We anticipate that strain signals quantified using this system can then be used in future research aimed at correlating the effects of mechanical loading on the phenotypic expression of dermal fibroblasts in acute and chronic ulcer models. Furthermore, the method developed here can be applied to continuum deformation analysis in other contexts, such as 3D cell culture via confocal microscopy, full scale CT and MRI imaging, and in machine vision.
本研究描述了一种新型系统,用于在负压伤口治疗(NPWT)期间以亚毫米空间分辨率获取软组织中的三维应变场。近期关于先进伤口治疗方式的研究推测,通过V.A.C. GranuFoam敷料(一种网状开孔聚氨酯泡沫(ROCF))施加低于大气压(负压)所引起的微变形,有助于调节肉芽组织形成的力学生物学[萨克塞纳,V.,黄,C.W.,黄,S.,艾希鲍姆,Q.,英格伯,D.,奥尔吉尔,D.P.,2004年。真空辅助闭合:伤口的微变形与细胞增殖。《整形与重建外科》114,1086 - 1096]。虽然临床反应明确,但由于密封敷料下方的伤口组织难以触及,无法测量伤口 - 敷料界面处的变形。在此,我们描述了一种用于微计算机断层扫描(microCT)成像的台式测试伤口模型的开发,该模型用于NPWT引起的变形,以及一套用于以亚毫米分辨率量化三维应变场的算法。在组织模型中诱导的微变形显示,在 - 50至 - 200 mmHg(- 6.7至 - 26.7 kPa)的低于大气压压力下,平均拉伸应变为18% - 23%。压缩应变(22% - 24%)和剪切应变(20% - 23%)与上述参考文献中微变形伤口治疗的二维有限元研究相关。我们预计,使用该系统量化的应变信号可用于未来的研究,旨在关联机械负荷对急性和慢性溃疡模型中真皮成纤维细胞表型表达的影响。此外,此处开发的方法可应用于其他情况下的连续变形分析,如通过共聚焦显微镜进行的三维细胞培养、全尺寸CT和MRI成像以及机器视觉。