Suppr超能文献

大鼠BOLD功能磁共振成像中低频波动的时空动态变化

Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat.

作者信息

Majeed Waqas, Magnuson Matthew, Keilholz Shella D

机构信息

Georgia Institute of Technology and Emory University, Biomedical Engineering, Atlanta, Georgia, USA.

出版信息

J Magn Reson Imaging. 2009 Aug;30(2):384-93. doi: 10.1002/jmri.21848.

Abstract

PURPOSE

To examine spatiotemporal dynamics of low frequency fluctuations in rat cortex.

MATERIALS AND METHODS

Gradient-echo echo-planar imaging images were acquired from anesthetized rats (repetition time = 100 ms). Power spectral analysis was performed to detect different frequency peaks. Functional connectivity maps were obtained for the frequency peaks of interest. The images in the filtered time-series were displayed as a movie to study spatiotemporal patterns in the data for frequency bands of interest.

RESULTS

High temporal and spectral resolution allowed separation of primary components of physiological noise and visualization of spectral details. Two low frequency peaks with distinct characteristics were observed. Selective visualization of the second low frequency peak revealed waves of activity that typically began in the secondary somatosensory cortex and propagated to the primary motor cortex.

CONCLUSION

To date, analysis of these fluctuations has focused on the detection of functional networks assuming steady state conditions. These results suggest that detailed examination of the spatiotemporal dynamics of the low frequency fluctuations may provide more insight into brain function, and add a new perspective to the analysis of resting state fMRI data.

摘要

目的

研究大鼠皮质低频波动的时空动态。

材料与方法

从麻醉大鼠获取梯度回波平面成像图像(重复时间 = 100毫秒)。进行功率谱分析以检测不同频率峰值。获取感兴趣频率峰值的功能连接图。将滤波后时间序列中的图像显示为电影,以研究感兴趣频段数据中的时空模式。

结果

高时间和光谱分辨率允许分离生理噪声的主要成分并可视化光谱细节。观察到两个具有不同特征的低频峰值。对第二个低频峰值的选择性可视化显示出活动波,这些活动波通常起始于次级体感皮层并传播至初级运动皮层。

结论

迄今为止,对这些波动的分析主要集中在假设稳态条件下功能网络的检测上。这些结果表明,对低频波动的时空动态进行详细检查可能会为脑功能提供更多见解,并为静息态功能磁共振成像数据的分析增添新的视角。

相似文献

1
Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat.
J Magn Reson Imaging. 2009 Aug;30(2):384-93. doi: 10.1002/jmri.21848.
2
Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
Neuroimage. 2014 Jan 1;84:1018-31. doi: 10.1016/j.neuroimage.2013.09.029. Epub 2013 Sep 23.
4
An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI.
Neuroimage. 2021 Nov;243:118541. doi: 10.1016/j.neuroimage.2021.118541. Epub 2021 Aug 31.
5
How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
Neuroimage. 2017 Feb 15;147:726-735. doi: 10.1016/j.neuroimage.2016.11.065. Epub 2016 Nov 27.
6
Compressed sensing fMRI using gradient-recalled echo and EPI sequences.
Neuroimage. 2014 May 15;92:312-21. doi: 10.1016/j.neuroimage.2014.01.045. Epub 2014 Feb 2.
7
Resting state network connectivity is attenuated by fMRI acoustic noise.
Neuroimage. 2022 Feb 15;247:118791. doi: 10.1016/j.neuroimage.2021.118791. Epub 2021 Dec 14.
8
Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging.
Neuroimage. 2012 May 15;61(1):115-30. doi: 10.1016/j.neuroimage.2012.02.059. Epub 2012 Feb 28.
10
Advantages of short repetition time resting-state functional MRI enabled by simultaneous multi-slice imaging.
J Neurosci Methods. 2019 Jan 1;311:122-132. doi: 10.1016/j.jneumeth.2018.09.033. Epub 2018 Oct 6.

引用本文的文献

2
Time-Varying Spatial Propagation of Brain Networks in fMRI Data.
Hum Brain Mapp. 2025 Feb 1;46(2):e70131. doi: 10.1002/hbm.70131.
4
Variation in the distribution of large-scale spatiotemporal patterns of activity across brain states.
Front Syst Neurosci. 2024 Aug 2;18:1425491. doi: 10.3389/fnsys.2024.1425491. eCollection 2024.
6
Variation in the Distribution of Large-scale Spatiotemporal Patterns of Activity Across Brain States.
bioRxiv. 2024 Apr 29:2024.04.26.591295. doi: 10.1101/2024.04.26.591295.
7
Infraslow dynamic patterns in human cortical networks track a spectrum of external to internal attention.
bioRxiv. 2024 Apr 23:2024.04.22.590625. doi: 10.1101/2024.04.22.590625.
8
Creative tempo: Spatiotemporal dynamics of the default mode network in improvisational musicians.
bioRxiv. 2024 Apr 9:2024.04.07.588391. doi: 10.1101/2024.04.07.588391.
9
Time-varying functional connectivity predicts fluctuations in sustained attention in a serial tapping task.
Cogn Affect Behav Neurosci. 2024 Feb;24(1):111-125. doi: 10.3758/s13415-024-01156-1. Epub 2024 Jan 22.

本文引用的文献

1
Further observations on the spreading depression of activity in the cerebral cortex.
J Neurophysiol. 1947 Nov;10(6):409-14. doi: 10.1152/jn.1947.10.6.409.
2
Electrophysiological correlates of the brain's intrinsic large-scale functional architecture.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44. doi: 10.1073/pnas.0807010105. Epub 2008 Oct 8.
3
Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum.
J Neurosci. 2008 Jun 18;28(25):6453-8. doi: 10.1523/JNEUROSCI.0573-08.2008.
5
Resting-state functional connectivity of the rat brain.
Magn Reson Med. 2008 May;59(5):1021-9. doi: 10.1002/mrm.21524.
6
Synchronized delta oscillations correlate with the resting-state functional MRI signal.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18265-9. doi: 10.1073/pnas.0705791104. Epub 2007 Nov 8.
7
Competition between functional brain networks mediates behavioral variability.
Neuroimage. 2008 Jan 1;39(1):527-37. doi: 10.1016/j.neuroimage.2007.08.008. Epub 2007 Aug 23.
8
BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat.
Neuroimage. 2008 Jan 1;39(1):248-60. doi: 10.1016/j.neuroimage.2007.07.063. Epub 2007 Aug 22.
9
Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
Neuroimage. 2007 Nov 1;38(2):306-20. doi: 10.1016/j.neuroimage.2007.07.037. Epub 2007 Aug 9.
10
Electrophysiological signatures of resting state networks in the human brain.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5. doi: 10.1073/pnas.0700668104. Epub 2007 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验