Suppr超能文献

使用梯度回波和回波平面成像序列的压缩感知功能磁共振成像

Compressed sensing fMRI using gradient-recalled echo and EPI sequences.

作者信息

Zong Xiaopeng, Lee Juyoung, John Poplawsky Alexander, Kim Seong-Gi, Ye Jong Chul

机构信息

Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Bio-Imaging & Signal Processing Lab., Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejon 305-701, Republic of Korea.

出版信息

Neuroimage. 2014 May 15;92:312-21. doi: 10.1016/j.neuroimage.2014.01.045. Epub 2014 Feb 2.

Abstract

Compressed sensing (CS) may be useful for accelerating data acquisitions in high-resolution fMRI. However, due to the inherent slow temporal dynamics of the hemodynamic signals and concerns of potential statistical power loss, the CS approach for fMRI (CS-fMRI) has not been extensively investigated. To evaluate the utility of CS in fMRI application, we systematically investigated the properties of CS-fMRI using computer simulations and in vivo experiments of rat forepaw sensory and odor stimulations with gradient-recalled echo (GRE) and echo planar imaging (EPI) sequences. Various undersampling patterns along the phase-encoding direction were studied and k-t FOCUSS was used as the CS reconstruction algorithm, which exploits the temporal redundancy of images. Functional sensitivity, specificity, and time courses were compared between fully-sampled and CS-fMRI with reduction factors of 2 and 4. CS-fMRI with GRE, but not with EPI, improves the statistical sensitivity for activation detection over the fully sampled data when the ratio of the fMRI signal change to noise is low. CS improves the temporal resolution and reduces temporal noise correlations. While CS reduces the functional response amplitudes, the noise variance is also reduced to make the overall activation detection more sensitive. Consequently, CS is a valuable fMRI acceleration approach, especially for GRE fMRI studies.

摘要

压缩感知(CS)可能有助于加速高分辨率功能磁共振成像(fMRI)的数据采集。然而,由于血液动力学信号固有的缓慢时间动态特性以及对潜在统计功效损失的担忧,用于fMRI的CS方法(CS-fMRI)尚未得到广泛研究。为了评估CS在fMRI应用中的效用,我们使用计算机模拟以及大鼠前爪感觉和气味刺激的体内实验,并采用梯度回波(GRE)和回波平面成像(EPI)序列,系统地研究了CS-fMRI的特性。研究了沿相位编码方向的各种欠采样模式,并使用k-t FOCUSS作为CS重建算法,该算法利用了图像的时间冗余性。比较了全采样和CS-fMRI(缩减因子为2和4)之间的功能敏感性、特异性和时间进程。当fMRI信号变化与噪声的比率较低时,采用GRE序列的CS-fMRI相比于全采样数据,能提高激活检测的统计敏感性,但采用EPI序列的CS-fMRI则不能。CS提高了时间分辨率并降低了时间噪声相关性。虽然CS降低了功能响应幅度,但噪声方差也降低了,从而使整体激活检测更加敏感。因此,CS是一种有价值的fMRI加速方法,特别是对于GRE fMRI研究。

相似文献

1
Compressed sensing fMRI using gradient-recalled echo and EPI sequences.
Neuroimage. 2014 May 15;92:312-21. doi: 10.1016/j.neuroimage.2014.01.045. Epub 2014 Feb 2.
2
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T.
Biomed Res Int. 2015;2015:131926. doi: 10.1155/2015/131926. Epub 2015 Aug 27.
3
Compressed sensing reconstruction improves sensitivity of variable density spiral fMRI.
Magn Reson Med. 2013 Dec;70(6):1634-43. doi: 10.1002/mrm.24621. Epub 2013 Feb 6.
4
BOLD sensitivity and SNR characteristics of parallel imaging-accelerated single-shot multi-echo EPI for fMRI.
Neuroimage. 2014 Jan 1;84:65-75. doi: 10.1016/j.neuroimage.2013.08.007. Epub 2013 Aug 15.
5
High spatial resolution compressed sensing (HSPARSE) functional MRI.
Magn Reson Med. 2016 Aug;76(2):440-55. doi: 10.1002/mrm.25854. Epub 2015 Oct 29.
7
k-t FASTER: Acceleration of functional MRI data acquisition using low rank constraints.
Magn Reson Med. 2015 Aug;74(2):353-64. doi: 10.1002/mrm.25395. Epub 2014 Aug 28.
8
Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized C studies.
Magn Reson Med. 2017 Feb;77(2):538-546. doi: 10.1002/mrm.26125. Epub 2016 Jan 24.
9
Investigating the benefits of multi-echo EPI for fMRI at 7 T.
Neuroimage. 2009 May 1;45(4):1162-72. doi: 10.1016/j.neuroimage.2009.01.007. Epub 2009 Jan 21.

引用本文的文献

1
Awake rodent fMRI: Gradient-echo echo planar imaging versus compressed-sensing fast low-angle shot.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00406. eCollection 2025.
3
Differential functional change in olfactory bulb and olfactory eloquent areas in Parkinson's disease.
Brain Commun. 2024 Nov 16;6(6):fcae413. doi: 10.1093/braincomms/fcae413. eCollection 2024.
4
Non-Cartesian 3D-SPARKLING vs Cartesian 3D-EPI encoding schemes for functional Magnetic Resonance Imaging at 7 Tesla.
PLoS One. 2024 May 13;19(5):e0299925. doi: 10.1371/journal.pone.0299925. eCollection 2024.
5
Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb.
Neuroimage. 2023 Jul 1;274:120121. doi: 10.1016/j.neuroimage.2023.120121. Epub 2023 Apr 18.
6
Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI.
Science. 2022 Nov 4;378(6619):493-499. doi: 10.1126/science.abq3868. Epub 2022 Nov 3.
7
Mapping of whole-cerebrum resting-state networks using ultra-high resolution acquisition protocols.
Hum Brain Mapp. 2022 Aug 1;43(11):3386-3403. doi: 10.1002/hbm.25855. Epub 2022 Apr 6.
9
Subspace-constrained approaches to low-rank fMRI acceleration.
Neuroimage. 2021 Sep;238:118235. doi: 10.1016/j.neuroimage.2021.118235. Epub 2021 Jun 3.
10
Revealing the mechanisms behind novel auditory stimuli discrimination: An evaluation of silent functional MRI using looping star.
Hum Brain Mapp. 2021 Jun 15;42(9):2833-2850. doi: 10.1002/hbm.25407. Epub 2021 Mar 17.

本文引用的文献

1
Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb.
Neuroimage. 2014 May 1;91:237-51. doi: 10.1016/j.neuroimage.2013.12.067. Epub 2014 Jan 10.
3
A modified generalized series approach: application to sparsely sampled FMRI.
IEEE Trans Biomed Eng. 2013 Oct;60(10):2867-77. doi: 10.1109/TBME.2013.2265699. Epub 2013 Jun 3.
4
Compressed sensing reconstruction improves sensitivity of variable density spiral fMRI.
Magn Reson Med. 2013 Dec;70(6):1634-43. doi: 10.1002/mrm.24621. Epub 2013 Feb 6.
6
Contributions of dynamic venous blood volume versus oxygenation level changes to BOLD fMRI.
Neuroimage. 2012 May 1;60(4):2238-46. doi: 10.1016/j.neuroimage.2012.02.052. Epub 2012 Feb 28.
7
A fast majorize-minimize algorithm for the recovery of sparse and low-rank matrices.
IEEE Trans Image Process. 2012 Feb;21(2):742-53. doi: 10.1109/TIP.2011.2165552. Epub 2011 Aug 22.
8
k-t Group sparse: a method for accelerating dynamic MRI.
Magn Reson Med. 2011 Oct;66(4):1163-76. doi: 10.1002/mrm.22883. Epub 2011 Mar 9.
9
Accelerated cardiac T2 mapping using breath-hold multiecho fast spin-echo pulse sequence with k-t FOCUSS.
Magn Reson Med. 2011 Jun;65(6):1661-9. doi: 10.1002/mrm.22756. Epub 2011 Feb 28.
10
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验