Anderson Ryan M, Bosch Justin A, Goll Mary G, Hesselson Daniel, Dong P Duc Si, Shin Donghun, Chi Neil C, Shin Chong Hyun, Schlegel Amnon, Halpern Marnie, Stainier Didier Y R
Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158-2324, USA.
Dev Biol. 2009 Oct 1;334(1):213-23. doi: 10.1016/j.ydbio.2009.07.017. Epub 2009 Jul 22.
Developmental mechanisms regulating gene expression and the stable acquisition of cell fate direct cytodifferentiation during organogenesis. Moreover, it is likely that such mechanisms could be exploited to repair or regenerate damaged organs. DNA methyltransferases (Dnmts) are enzymes critical for epigenetic regulation, and are used in concert with histone methylation and acetylation to regulate gene expression and maintain genomic integrity and chromosome structure. We carried out two forward genetic screens for regulators of endodermal organ development. In the first, we screened for altered morphology of developing digestive organs, while in the second we screed for the lack of terminally differentiated cell types in the pancreas and liver. From these screens, we identified two mutant alleles of zebrafish dnmt1. Both lesions are predicted to eliminate dnmt1 function; one is a missense mutation in the catalytic domain and the other is a nonsense mutation that eliminates the catalytic domain. In zebrafish dnmt1 mutants, the pancreas and liver form normally, but begin to degenerate after 84 h post fertilization (hpf). Acinar cells are nearly abolished through apoptosis by 100 hpf, though neither DNA replication, nor entry into mitosis is halted in the absence of detectable Dnmt1. However, endocrine cells and ducts are largely spared. Surprisingly, dnmt1 mutants and dnmt1 morpholino-injected larvae show increased capacity for pancreatic beta cell regeneration in an inducible model of pancreatic beta cell ablation. Thus, our data suggest that Dnmt1 is dispensable for pancreatic duct or endocrine cell formation, but not for acinar cell survival. In addition, Dnmt1 may influence the differentiation of pancreatic beta cell progenitors or the reprogramming of cells toward the pancreatic beta cell fate.
在器官发生过程中,调控基因表达和细胞命运稳定获得的发育机制指导细胞分化。此外,利用这些机制修复或再生受损器官是有可能的。DNA甲基转移酶(Dnmts)是表观遗传调控的关键酶,与组蛋白甲基化和乙酰化协同作用,以调控基因表达、维持基因组完整性和染色体结构。我们针对内胚层器官发育的调控因子进行了两项正向遗传学筛选。第一项筛选中,我们寻找发育中消化器官形态的改变;第二项筛选中,我们寻找胰腺和肝脏中终末分化细胞类型的缺失。通过这些筛选,我们鉴定出斑马鱼dnmt1的两个突变等位基因。预计这两个损伤都会消除dnmt1的功能;一个是催化结构域中的错义突变,另一个是消除催化结构域的无义突变。在斑马鱼dnmt1突变体中,胰腺和肝脏正常形成,但在受精后84小时(hpf)开始退化。到100 hpf时,腺泡细胞几乎通过凋亡消失,尽管在没有可检测到的Dnmt1的情况下,DNA复制和进入有丝分裂都没有停止。然而,内分泌细胞和导管基本未受影响。令人惊讶的是,在胰腺β细胞消融的诱导模型中,dnmt1突变体和注射了dnmt1吗啉代寡核苷酸的幼虫显示出胰腺β细胞再生能力增强。因此,我们的数据表明,Dnmt1对于胰腺导管或内分泌细胞的形成不是必需的,但对于腺泡细胞的存活是必需的。此外,Dnmt1可能影响胰腺β细胞祖细胞的分化或细胞向胰腺β细胞命运的重编程。