Suppr超能文献

斑马鱼整个生命周期及β细胞再生过程中表达nkx6.1的细胞的祖细胞潜能。

Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration.

作者信息

Ghaye Aurélie P, Bergemann David, Tarifeño-Saldivia Estefania, Flasse Lydie C, Von Berg Virginie, Peers Bernard, Voz Marianne L, Manfroid Isabelle

机构信息

Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-Research, (Sart-Tilman) University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium.

出版信息

BMC Biol. 2015 Sep 2;13:70. doi: 10.1186/s12915-015-0179-4.

Abstract

BACKGROUND

In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors.

RESULTS

Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells.

CONCLUSIONS

We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In contrast to the mouse, pancreatic progenitor markers nkx6.1 and pdx1 continue to be expressed in adult ductal cells, a subset of which we show are still able to proliferate and undergo ductal and endocrine differentiation, providing robust evidence of the existence of pancreatic progenitor/stem cells in the adult zebrafish. Our findings support the hypothesis that nkx6.1+ pancreatic progenitors contribute to beta cell regeneration. Further characterization of these cells will open up new perspectives for anti-diabetic therapies.

摘要

背景

与哺乳动物不同,斑马鱼具有高效再生其胰腺β细胞的显著能力。了解斑马鱼的再生机制以及与哺乳动物的差异,对于发现能够刺激哺乳动物再生过程的分子至关重要。为了鉴定斑马鱼中能够产生新β细胞的胰腺细胞,我们构建了新的转基因品系,用于追踪多能胰腺祖细胞和内分泌前体细胞。

结果

利用新型细菌人工染色体转基因nkx6.1和ascl1b报告基因品系,我们确定在斑马鱼胚胎中,nkx6.1阳性细胞可产生所有胰腺细胞类型,ascl1b阳性细胞可产生所有内分泌细胞类型。这两个基因最初在胰腺原基中共表达,其结构域分离,并非由于相互抑制,而是通过Notch信号的相反作用,在祖细胞中维持nkx6.1表达的同时抑制ascl1b。在成年斑马鱼中,nkx6.1仅在导管树中持续表达,其表达与中央腺泡/终末导管细胞中的Notch活性信号一致。追踪这些细胞发现,在正常(非糖尿病)动物中,它们能够分化为其他导管细胞和胰岛素表达细胞。导管细胞产生内分泌细胞的这种能力得到了nkx6.1:GFP导管细胞转录组中ascl1b检测结果的支持。除了Notch和Wnt信号通路的相关因子外,该转录组还揭示了几个新的标记物,如id2a。最后,我们表明成年斑马鱼的β细胞消融会触发导管细胞的增殖及其向胰岛素表达细胞的分化。

结论

我们已经表明,在斑马鱼胚胎中,nkx6.1 +细胞是真正的多能胰腺祖细胞,而ascl1b +细胞代表定向的内分泌前体细胞。与小鼠不同,胰腺祖细胞标记物nkx6.1和pdx1在成年导管细胞中持续表达,我们发现其中一部分细胞仍然能够增殖并进行导管和内分泌分化,这为成年斑马鱼中存在胰腺祖细胞/干细胞提供了有力证据。我们的研究结果支持nkx6.1 +胰腺祖细胞参与β细胞再生的假说。对这些细胞的进一步表征将为抗糖尿病治疗开辟新的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b099/4556004/baa0170fd65f/12915_2015_179_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验