Section of Cardiovascular Sciences, One Baylor Plaza BCM620, Baylor College of Medicine, Houston TX 77030, USA.
J Mol Cell Cardiol. 2010 Mar;48(3):504-11. doi: 10.1016/j.yjmcc.2009.07.015. Epub 2009 Jul 23.
The dynamic alterations in the cardiac extracellular matrix following myocardial infarction not only determine the mechanical properties of the infarcted heart, but also directly modulate the inflammatory and reparative response. During the inflammatory phase of healing, rapid activation of Matrix Metalloproteinases (MMP) causes degradation of the cardiac extracellular matrix. Matrix fragments exert potent pro-inflammatory actions, while MMPs process cytokines and chemokines altering their biological activity. In addition, vascular hyperpermeability results in extravasation of fibronectin and fibrinogen leading to formation of a plasma-derived provisional matrix that serves as a scaffold for leukocyte infiltration. Clearance of the infarct from dead cells and matrix debris is essential for resolution of inflammation and marks the transition to the proliferative phase. The fibrin-based provisional matrix is lysed and cellular fibronectin is secreted. ED-A fibronectin, mechanical tension and Transforming Growth Factor (TGF)-beta are essential for modulation of fibroblasts into myofibroblasts, the main collagen-secreting cells in the wound. The matricellular proteins thrombospondin-1 and -2, osteopontin, tenascin-C, periostin, and secreted protein acidic and rich in cysteine (SPARC) are induced in the infarct regulating cellular interactions and promoting matrix organization. As the infarct matures, matrix cross-linking results in formation of a dense collagen-based scar. At this stage, shielding of fibroblasts from external mechanical tension by the mature matrix network may promote deactivation and cellular quiescence. The components of the extracellular matrix do not passively follow the pathologic alterations of the infarcted heart but critically modulate inflammatory and reparative pathways by transducing signals that affect cell survival, phenotype and gene expression.
心肌梗死后心脏细胞外基质的动态改变不仅决定了梗死心脏的机械特性,而且直接调节炎症和修复反应。在愈合的炎症阶段,基质金属蛋白酶(MMP)的快速激活导致心脏细胞外基质的降解。基质片段发挥强烈的促炎作用,而 MMP 则处理细胞因子和趋化因子,改变其生物学活性。此外,血管通透性增加导致纤维连接蛋白和纤维蛋白原外渗,形成血浆衍生的临时基质,作为白细胞浸润的支架。从死亡细胞和基质碎片中清除梗死组织对于炎症的消退至关重要,并标志着向增殖期的过渡。纤维蛋白为基础的临时基质被溶解,细胞纤维连接蛋白被分泌。ED-A 纤维连接蛋白、机械张力和转化生长因子(TGF)-β对于调节成纤维细胞向肌成纤维细胞的转化是必不可少的,肌成纤维细胞是伤口中主要的胶原分泌细胞。血小板反应蛋白-1 和 -2、骨桥蛋白、腱糖蛋白-C、骨膜蛋白和富含半胱氨酸的酸性分泌蛋白(SPARC)等基质细胞蛋白在梗死灶中被诱导,调节细胞相互作用并促进基质组织化。随着梗死灶的成熟,基质交联导致致密的胶原瘢痕形成。在这个阶段,成熟基质网络对成纤维细胞的外部机械张力的屏蔽可能促进其失活和细胞静止。细胞外基质的成分并不是被动地跟随梗死心脏的病理改变,而是通过传递影响细胞存活、表型和基因表达的信号,对炎症和修复途径进行关键调节。