Abdullah Ummi, Cullen Paul J
Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA.
Eukaryot Cell. 2009 Sep;8(9):1362-72. doi: 10.1128/EC.00015-09. Epub 2009 Jul 24.
Signal transduction pathways control multiple aspects of cellular behavior, including global changes to the cell cycle, cell polarity, and gene expression, which can result in the formation of a new cell type. In the budding yeast Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth induces a dimorphic foraging response under nutrient-limiting conditions. How nutritional cues feed into MAPK activation remains an open question. Here we report a functional connection between the elongator tRNA modification complex (ELP genes) and activity of the filamentous growth pathway. Elongator was required for filamentous growth pathway signaling, and elp mutants were defective for invasive growth, cell polarization, and MAPK-dependent mat formation. Genetic suppression analysis showed that elongator functions at the level of Msb2p, the signaling mucin that operates at the head of the pathway, which led to the finding that elongator regulates the starvation-dependent expression of the MSB2 gene. The Elp complex was not required for activation of related pathways (pheromone response or high osmolarity glycerol response) that share components with the filamentous growth pathway. Because protein translation provides a rough metric of cellular nutritional status, elongator may convey nutritional information to the filamentous growth pathway at the level of MSB2 expression.
信号转导通路控制细胞行为的多个方面,包括细胞周期、细胞极性和基因表达的整体变化,这些变化可能导致新细胞类型的形成。在芽殖酵母酿酒酵母中,控制丝状生长的丝裂原活化蛋白激酶(MAPK)通路在营养限制条件下诱导双态觅食反应。营养信号如何输入MAPK激活仍然是一个悬而未决的问题。在这里,我们报告了延伸因子tRNA修饰复合物(ELP基因)与丝状生长通路活性之间的功能联系。延伸因子是丝状生长通路信号传导所必需的,elp突变体在侵袭性生长、细胞极化和MAPK依赖性菌垫形成方面存在缺陷。遗传抑制分析表明,延伸因子在Msb2p水平发挥作用,Msb2p是位于该通路上游的信号黏蛋白,这一发现表明延伸因子调节MSB2基因的饥饿依赖性表达。对于与丝状生长通路共享组件的相关通路(信息素反应或高渗甘油反应)的激活,Elp复合物不是必需的。由于蛋白质翻译提供了细胞营养状态的大致指标,延伸因子可能在MSB2表达水平将营养信息传递给丝状生长通路。