Suppr超能文献

发现基因对认知和认知障碍影响的全基因组策略:方法学考量

Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations.

作者信息

Potkin Steven G, Turner Jessica A, Guffanti Guia, Lakatos Anita, Torri Federica, Keator David B, Macciardi Fabio

机构信息

Department of Psychiatry and Human Behavior, University California of Irvine, Irvine, CA, USA.

出版信息

Cogn Neuropsychiatry. 2009;14(4-5):391-418. doi: 10.1080/13546800903059829.

Abstract

INTRODUCTION

Genes play a well-documented role in determining normal cognitive function. This paper focuses on reviewing strategies for the identification of common genetic variation in genes that modulate normal and abnormal cognition with a genome-wide association scan (GWAS). GWASs make it possible to survey the entire genome to discover important but unanticipated genetic influences.

METHODS

The use of a quantitative phenotype in combination with a GWAS provides many advantages over a case-control design, both in power and in physiological understanding of the underlying cognitive processes. We review the major features of this approach, and show how, using a General Linear Model method, the contribution of each Single Nucleotide Polymorphism (SNP) to the phenotype is determined, and adjustments then made for multiple tests. An example of the strategy is presented, in which fMRI measures of cortical inefficiency while performing a working memory task are used as the quantitative phenotype. We estimate power under different effect sizes (10-30%) and variations in allelic frequency for a Quantitative Trait (QT) (10-20%), and compare them to a case-control design with an Odds Ratio (OR) of 1.5, showing how a QT approach is superior to a traditional case-control. In the presented example, this method identifies putative susceptibility genes for schizophrenia which affect prefrontal efficiency and have functions related to cell migration, forebrain development and stress response.

CONCLUSION

The use of QT as phenotypes provide increased statistical power over categorical association approaches and when combined with a GWAS creates a strategy for identification of unanticipated genes that modulate cognitive processes and cognitive disorders.

摘要

引言

基因在决定正常认知功能方面发挥着有充分文献记载的作用。本文重点回顾通过全基因组关联扫描(GWAS)来识别调节正常和异常认知的基因中常见遗传变异的策略。GWAS使全面检测基因组以发现重要但未预期的遗传影响成为可能。

方法

将定量表型与GWAS结合使用,在检测效能以及对潜在认知过程的生理学理解方面,都比病例对照设计具有许多优势。我们回顾了这种方法的主要特征,并展示了如何使用一般线性模型方法确定每个单核苷酸多态性(SNP)对表型的贡献,然后针对多重检验进行调整。给出了该策略的一个示例,其中在执行工作记忆任务时对皮质低效性的功能磁共振成像(fMRI)测量被用作定量表型。我们估计了不同效应大小(10 - 30%)和数量性状(QT)等位基因频率变化(10 - 20%)时的检测效能,并将其与优势比(OR)为1.5的病例对照设计进行比较,展示了QT方法如何优于传统的病例对照设计。在给出的示例中,该方法识别出了影响前额叶效能且与细胞迁移、前脑发育和应激反应相关的精神分裂症假定易感基因。

结论

使用QT作为表型比分类关联方法具有更高的统计效能,并且与GWAS结合时,创建了一种识别调节认知过程和认知障碍的未预期基因的策略。

相似文献

2
Variability in working memory performance explained by epistasis vs polygenic scores in the ZNF804A pathway.
JAMA Psychiatry. 2014 Jul 1;71(7):778-785. doi: 10.1001/jamapsychiatry.2014.528.
4
A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype.
Schizophr Bull. 2009 Jan;35(1):96-108. doi: 10.1093/schbul/sbn155. Epub 2008 Nov 20.
6
Association of genetic variants on 15q12 with cortical thickness and cognition in schizophrenia.
Arch Gen Psychiatry. 2011 Aug;68(8):781-90. doi: 10.1001/archgenpsychiatry.2011.81.
8
Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression.
Am J Med Genet B Neuropsychiatr Genet. 2016 Dec;171(8):1170-1179. doi: 10.1002/ajmg.b.32503. Epub 2016 Oct 20.
10
Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment.
Am J Med Genet B Neuropsychiatr Genet. 2015 Jul;168B(5):363-73. doi: 10.1002/ajmg.b.32319. Epub 2015 May 7.

引用本文的文献

1
Genetic impacts on nigral iron deposition in Parkinson's disease: A preliminary quantitative susceptibility mapping study.
CNS Neurosci Ther. 2023 Jul;29(7):1776-1784. doi: 10.1111/cns.14135. Epub 2023 Feb 27.
2
Brain structure and allelic associations in Alzheimer's disease.
CNS Neurosci Ther. 2023 Apr;29(4):1034-1048. doi: 10.1111/cns.14073. Epub 2022 Dec 27.
3
Applications and Challenges of Machine Learning Methods in Alzheimer's Disease Multi-Source Data Analysis.
Curr Genomics. 2021 Dec 31;22(8):564-582. doi: 10.2174/1389202923666211216163049.
5
Associating Multi-Modal Brain Imaging Phenotypes and Genetic Risk Factors via a Dirty Multi-Task Learning Method.
IEEE Trans Med Imaging. 2020 Nov;39(11):3416-3428. doi: 10.1109/TMI.2020.2995510. Epub 2020 Oct 28.
6
Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured SCCA approach.
Med Image Anal. 2020 Apr;61:101656. doi: 10.1016/j.media.2020.101656. Epub 2020 Jan 23.
7
Brain Imaging Genomics: Integrated Analysis and Machine Learning.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.
8
Genome-wide association study identifies locus influencing brain glucose metabolism.
Ann Transl Med. 2018 Nov;6(22):436. doi: 10.21037/atm.2018.07.05.
9
Genes associated with anhedonia: a new analysis in a large clinical trial (GENDEP).
Transl Psychiatry. 2018 Aug 13;8(1):150. doi: 10.1038/s41398-018-0198-3.

本文引用的文献

1
Gene-environment interaction tests for dichotomous traits in trios and sibships.
Genet Epidemiol. 2009 Dec;33(8):691-9. doi: 10.1002/gepi.20421.
2
A dynamic network approach for the study of human phenotypes.
PLoS Comput Biol. 2009 Apr;5(4):e1000353. doi: 10.1371/journal.pcbi.1000353. Epub 2009 Apr 10.
3
A random forest approach to the detection of epistatic interactions in case-control studies.
BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S65. doi: 10.1186/1471-2105-10-S1-S65.
4
Gene regulatory network inference: data integration in dynamic models-a review.
Biosystems. 2009 Apr;96(1):86-103. doi: 10.1016/j.biosystems.2008.12.004. Epub 2008 Dec 27.
5
Inferring genetic values for quantitative traits non-parametrically.
Genet Res (Camb). 2008 Dec;90(6):525-40. doi: 10.1017/S0016672308009890.
6
Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia.
Mol Psychiatry. 2009 Apr;14(4):416-28. doi: 10.1038/mp.2008.127. Epub 2008 Dec 9.
7
A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data.
Neuroimage. 2009 Mar;45(1 Suppl):S163-72. doi: 10.1016/j.neuroimage.2008.10.057. Epub 2008 Nov 13.
8
Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study.
Schizophr Bull. 2009 Jan;35(1):19-31. doi: 10.1093/schbul/sbn162. Epub 2008 Nov 27.
9
A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype.
Schizophr Bull. 2009 Jan;35(1):96-108. doi: 10.1093/schbul/sbn155. Epub 2008 Nov 20.
10
Analysis of gene-gene interactions.
Curr Protoc Hum Genet. 2008 Oct;Chapter 1:Unit 1.14. doi: 10.1002/0471142905.hg0114s59.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验