Potkin Steven G, Turner Jessica A, Guffanti Guia, Lakatos Anita, Torri Federica, Keator David B, Macciardi Fabio
Department of Psychiatry and Human Behavior, University California of Irvine, Irvine, CA, USA.
Cogn Neuropsychiatry. 2009;14(4-5):391-418. doi: 10.1080/13546800903059829.
Genes play a well-documented role in determining normal cognitive function. This paper focuses on reviewing strategies for the identification of common genetic variation in genes that modulate normal and abnormal cognition with a genome-wide association scan (GWAS). GWASs make it possible to survey the entire genome to discover important but unanticipated genetic influences.
The use of a quantitative phenotype in combination with a GWAS provides many advantages over a case-control design, both in power and in physiological understanding of the underlying cognitive processes. We review the major features of this approach, and show how, using a General Linear Model method, the contribution of each Single Nucleotide Polymorphism (SNP) to the phenotype is determined, and adjustments then made for multiple tests. An example of the strategy is presented, in which fMRI measures of cortical inefficiency while performing a working memory task are used as the quantitative phenotype. We estimate power under different effect sizes (10-30%) and variations in allelic frequency for a Quantitative Trait (QT) (10-20%), and compare them to a case-control design with an Odds Ratio (OR) of 1.5, showing how a QT approach is superior to a traditional case-control. In the presented example, this method identifies putative susceptibility genes for schizophrenia which affect prefrontal efficiency and have functions related to cell migration, forebrain development and stress response.
The use of QT as phenotypes provide increased statistical power over categorical association approaches and when combined with a GWAS creates a strategy for identification of unanticipated genes that modulate cognitive processes and cognitive disorders.
基因在决定正常认知功能方面发挥着有充分文献记载的作用。本文重点回顾通过全基因组关联扫描(GWAS)来识别调节正常和异常认知的基因中常见遗传变异的策略。GWAS使全面检测基因组以发现重要但未预期的遗传影响成为可能。
将定量表型与GWAS结合使用,在检测效能以及对潜在认知过程的生理学理解方面,都比病例对照设计具有许多优势。我们回顾了这种方法的主要特征,并展示了如何使用一般线性模型方法确定每个单核苷酸多态性(SNP)对表型的贡献,然后针对多重检验进行调整。给出了该策略的一个示例,其中在执行工作记忆任务时对皮质低效性的功能磁共振成像(fMRI)测量被用作定量表型。我们估计了不同效应大小(10 - 30%)和数量性状(QT)等位基因频率变化(10 - 20%)时的检测效能,并将其与优势比(OR)为1.5的病例对照设计进行比较,展示了QT方法如何优于传统的病例对照设计。在给出的示例中,该方法识别出了影响前额叶效能且与细胞迁移、前脑发育和应激反应相关的精神分裂症假定易感基因。
使用QT作为表型比分类关联方法具有更高的统计效能,并且与GWAS结合时,创建了一种识别调节认知过程和认知障碍的未预期基因的策略。