Hecker Michael, Lambeck Sandro, Toepfer Susanne, van Someren Eugene, Guthke Reinhard
Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.
Biosystems. 2009 Apr;96(1):86-103. doi: 10.1016/j.biosystems.2008.12.004. Epub 2008 Dec 27.
Systems biology aims to develop mathematical models of biological systems by integrating experimental and theoretical techniques. During the last decade, many systems biological approaches that base on genome-wide data have been developed to unravel the complexity of gene regulation. This review deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through computational methods. Standard GRN inference methods primarily use gene expression data derived from microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g. genome sequence and protein-DNA interaction data, clearly supports the network inference process. This review focuses on promising modelling approaches that use such diverse types of molecular biological information. In particular, approaches are discussed that enable the modelling of the dynamics of gene regulatory systems. The review provides an overview of common modelling schemes and learning algorithms and outlines current challenges in GRN modelling.
系统生物学旨在通过整合实验技术和理论技术来开发生物系统的数学模型。在过去十年中,已经开发了许多基于全基因组数据的系统生物学方法来揭示基因调控的复杂性。本综述探讨了如何通过计算方法从实验数据重建基因调控网络(GRN)。标准的GRN推理方法主要使用来自微阵列的基因表达数据。然而,纳入来自异质数据源的额外信息,例如基因组序列和蛋白质-DNA相互作用数据,显然有助于网络推理过程。本综述重点关注使用此类不同类型分子生物学信息的有前景的建模方法。特别是,讨论了能够对基因调控系统动力学进行建模的方法。该综述概述了常见的建模方案和学习算法,并概述了GRN建模当前面临的挑战。