Suppr超能文献

任意图上的分段光滑Mumford-Shah泛函。

The piecewise smooth Mumford-Shah functional on an arbitrary graph.

作者信息

Grady Leo, Alvino Christopher V

机构信息

Department of Imaging and Visualization, Siemens Corporate Research, Princeton, NJ 08540, USA.

出版信息

IEEE Trans Image Process. 2009 Nov;18(11):2547-61. doi: 10.1109/TIP.2009.2028258. Epub 2009 Jul 24.

Abstract

The Mumford-Shah functional has had a major impact on a variety of image analysis problems, including image segmentation and filtering, and, despite being introduced over two decades ago, it is still in widespread use. Present day optimization of the Mumford-Shah functional is predominated by active contour methods. Until recently, these formulations necessitated optimization of the contour by evolving via gradient descent, which is known for its overdependence on initialization and the tendency to produce undesirable local minima. In order to reduce these problems, we reformulate the corresponding Mumford-Shah functional on an arbitrary graph and apply the techniques of combinatorial optimization to produce a fast, low-energy solution. In contrast to traditional optimization methods, use of these combinatorial techniques necessitates consideration of the reconstructed image outside of its usual boundary, requiring additionally the inclusion of regularization for generating these values. The energy of the solution provided by this graph formulation is compared with the energy of the solution computed via traditional gradient descent-based narrow-band level set methods. This comparison demonstrates that our graph formulation and optimization produces lower energy solutions than the traditional gradient descent based contour evolution methods in significantly less time. Finally, we demonstrate the usefulness of the graph formulation to apply the Mumford-Shah functional to new applications such as point clustering and filtering of nonuniformly sampled images.

摘要

Mumford-Shah泛函对包括图像分割和滤波在内的各种图像分析问题产生了重大影响,尽管它是二十多年前提出的,但仍在广泛使用。目前,Mumford-Shah泛函的优化主要由活动轮廓方法主导。直到最近,这些公式还需要通过梯度下降来优化轮廓,而梯度下降以过度依赖初始化和产生不良局部最小值的趋势而闻名。为了减少这些问题,我们在任意图上重新制定了相应的Mumford-Shah泛函,并应用组合优化技术来产生快速、低能量的解决方案。与传统优化方法相比,使用这些组合技术需要考虑重建图像在其通常边界之外的情况,这还需要额外包含用于生成这些值的正则化。将这种图公式提供的解的能量与通过传统基于梯度下降的窄带水平集方法计算的解的能量进行比较。这种比较表明,我们的图公式和优化在显著更短的时间内产生的能量解比传统基于梯度下降的轮廓演化方法更低。最后,我们展示了图公式在将Mumford-Shah泛函应用于新应用(如点聚类和非均匀采样图像滤波)方面的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验