Cook Richard J, Tolusso David
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
Biostatistics. 2009 Oct;10(4):756-72. doi: 10.1093/biostatistics/kxp029. Epub 2009 Jul 27.
With clustered event time data, interest most often lies in marginal features such as quantiles or probabilities from the marginal event time distribution or covariate effects on marginal hazard functions. Copula models offer a convenient framework for modeling. We present methods of estimating the baseline marginal distributions, covariate effects, and association parameters for clustered current status data based on second-order generalized estimating equations. We examine the efficiency gains realized from using second-order estimating equations compared with first-order equations, issues of copula misspecification, and apply the methods to motivating studies including one on the incidence of joint damage in patients with psoriatic arthritis.
对于聚类事件时间数据,人们通常关注边际特征,例如来自边际事件时间分布的分位数或概率,或者协变量对边际风险函数的影响。Copula模型为建模提供了一个便利的框架。我们提出了基于二阶广义估计方程来估计聚类当前状态数据的基线边际分布、协变量效应和关联参数的方法。我们研究了使用二阶估计方程相对于一阶方程所实现的效率提升、Copula模型误设问题,并将这些方法应用于一些具有启发性的研究,包括一项关于银屑病关节炎患者关节损伤发生率的研究。