Program in Statistical and Data Sciences, Smith College, Northampton, Massachusetts, USA.
Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts, USA.
Biometrics. 2023 Sep;79(3):1670-1685. doi: 10.1111/biom.13787. Epub 2022 Dec 1.
The Botswana Combination Prevention Project was a cluster-randomized HIV prevention trial whose follow-up period coincided with Botswana's national adoption of a universal test and treat strategy for HIV management. Of interest is whether, and to what extent, this change in policy modified the preventative effects of the study intervention. To address such questions, we adopt a stratified proportional hazards model for clustered interval-censored data with time-dependent covariates and develop a composite expectation maximization algorithm that facilitates estimation of model parameters without placing parametric assumptions on either the baseline hazard functions or the within-cluster dependence structure. We show that the resulting estimators for the regression parameters are consistent and asymptotically normal. We also propose and provide theoretical justification for the use of the profile composite likelihood function to construct a robust sandwich estimator for the variance. We characterize the finite-sample performance and robustness of these estimators through extensive simulation studies. Finally, we conclude by applying this stratified proportional hazards model to a re-analysis of the Botswana Combination Prevention Project, with the national adoption of a universal test and treat strategy now modeled as a time-dependent covariate.
博茨瓦纳组合预防项目是一项集群随机 HIV 预防试验,其随访期恰逢博茨瓦纳全国通过一项普遍检测和治疗的 HIV 管理策略。我们感兴趣的是,这一政策变化是否以及在何种程度上改变了研究干预的预防效果。为了解决这些问题,我们采用了一种适用于具有时变协变量的集群区间删失数据的分层比例风险模型,并开发了一种组合期望最大化算法,该算法便于在不对方差函数或聚类内依赖结构进行参数假设的情况下估计模型参数。我们证明了回归参数的估计量是一致的和渐近正态的。我们还提出并为使用轮廓复合似然函数来构建方差的稳健夹心估计量提供了理论依据。我们通过广泛的模拟研究来描述这些估计量的有限样本性能和稳健性。最后,我们通过将分层比例风险模型应用于博茨瓦纳组合预防项目的重新分析来得出结论,现在将全国普遍检测和治疗策略的采用建模为时变协变量。