Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
Genet Med. 2009 Aug;11(8):588-94. doi: 10.1097/GIM.0b013e3181b13a4f.
Commercial internet-based companies offer genome-wide scans to predict the risk of common diseases and personalize nutrition and lifestyle recommendations. These risk estimates are updated with every new gene discovery.
To assess the benefits of updating risk information in commercial genome-wide scans, we compared type 2 diabetes risk predictions based on TCF7L2 alone, 18 polymorphisms alone, and 18 polymorphisms plus age, sex, and body mass index. Analyses were performed using data from the Rotterdam study, a prospective, population-based study among individuals aged 55 years and older. Data were available from 5297 participants.
The actual prevalence of type 2 diabetes in the study population was 20%. Predicted risks were below average for carriers of the TCF7L2 CC genotype (predicted risk 17.6%) and above average for the CT and TT genotypes (20.8% and 28.0%). Adding the other 17 polymorphisms caused 34% of participants to be reclassified (i.e., switched between below and above average): 24% of the CC carriers changed to increased risk, 52% and 6% of the CT and TT carriers changed to decreased risk. Including information on age, sex, and body mass index caused 29% to change categories (27%, 31%, and 19% for CC, CT, and TT carriers, respectively). In total, 39% of participants changed categories once when risk factors were updated, and 11% changed twice, i.e., back to their initial risk category.
Updating risk factors may produce contradictory information about an individual's risk status over time, which is undesirable if lifestyle and nutritional recommendations vary accordingly.
商业性基于互联网的公司提供全基因组扫描,以预测常见疾病的风险,并提供个性化的营养和生活方式建议。这些风险估计值会随着每一个新基因的发现而更新。
为了评估在商业性全基因组扫描中更新风险信息的益处,我们比较了仅基于 TCF7L2、18 个多态性以及 18 个多态性加上年龄、性别和体重指数预测 2 型糖尿病风险的结果。分析使用了 Rotterdam 研究的数据,这是一项针对 55 岁及以上人群的前瞻性、基于人群的研究。数据来自 5297 名参与者。
研究人群中 2 型糖尿病的实际患病率为 20%。携带 TCF7L2 CC 基因型的个体预测风险较低(预测风险 17.6%),而 CT 和 TT 基因型的个体预测风险较高(20.8%和 28.0%)。增加其他 17 个多态性使 34%的参与者被重新分类(即,在低于平均风险和高于平均风险之间切换):24%的 CC 携带者的风险增加,52%和 6%的 CT 和 TT 携带者的风险降低。包括年龄、性别和体重指数的信息会使 29%的参与者改变分类(CC、CT 和 TT 携带者分别为 27%、31%和 19%)。当风险因素更新时,共有 39%的参与者改变了一次分类,11%的参与者改变了两次,即回到他们最初的风险类别。
随着时间的推移,更新风险因素可能会产生关于个体风险状况的相互矛盾的信息,如果生活方式和营养建议相应改变,这是不理想的。