Suppr超能文献

常见复杂疾病个体基因组检测预测风险的差异。

Variations in predicted risks in personal genome testing for common complex diseases.

机构信息

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.

Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Genet Med. 2014 Jan;16(1):85-91. doi: 10.1038/gim.2013.80. Epub 2013 Jun 27.

Abstract

PURPOSE

The promise of personalized genomics for common complex diseases depends, in part, on the ability to predict genetic risks on the basis of single nucleotide polymorphisms. We examined and compared the methods of three companies (23andMe, deCODEme, and Navigenics) that have offered direct-to-consumer personal genome testing.

METHODS

We simulated genotype data for 100,000 individuals on the basis of published genotype frequencies and predicted disease risks using the methods of the companies. Predictive ability for six diseases was assessed by the AUC.

RESULTS

AUC values differed among the diseases and among the companies. The highest values of the AUC were observed for age-related macular degeneration, celiac disease, and Crohn disease. The largest difference among the companies was found for celiac disease: the AUC was 0.73 for 23andMe and 0.82 for deCODEme. Predicted risks differed substantially among the companies as a result of differences in the sets of single nucleotide polymorphisms selected and the average population risks selected by the companies, and in the formulas used for the calculation of risks.

CONCLUSION

Future efforts to design predictive models for the genomics of common complex diseases may benefit from understanding the strengths and limitations of the predictive algorithms designed by these early companies.

摘要

目的

个性化基因组学在常见复杂疾病中的应用前景,部分取决于能否基于单核苷酸多态性预测遗传风险。我们研究并比较了三家提供直接面向消费者的个人基因组检测服务的公司(23andMe、deCODEme 和 Navigenics)的方法。

方法

我们根据已发表的基因型频率模拟了 10 万名个体的基因型数据,并使用公司的方法预测了疾病风险。采用 AUC 评估了 6 种疾病的预测能力。

结果

疾病和公司之间的 AUC 值存在差异。AUC 值最高的疾病为年龄相关性黄斑变性、乳糜泻和克罗恩病。乳糜泻方面公司之间的差异最大:23andMe 的 AUC 为 0.73,deCODEme 的 AUC 为 0.82。由于所选单核苷酸多态性集和公司选择的平均人群风险以及用于计算风险的公式不同,各公司之间的预测风险存在显著差异。

结论

未来设计常见复杂疾病基因组学预测模型的工作可能会受益于对这些早期公司设计的预测算法的优势和局限性的了解。

相似文献

1
Variations in predicted risks in personal genome testing for common complex diseases.
Genet Med. 2014 Jan;16(1):85-91. doi: 10.1038/gim.2013.80. Epub 2013 Jun 27.
2
Direct-to-consumer personal genome testing for age-related macular degeneration.
Invest Ophthalmol Vis Sci. 2014 Aug 21;55(10):6167-74. doi: 10.1167/iovs.14-15142.
3
Systematic evaluation of personal genome services for Japanese individuals.
J Hum Genet. 2013 Nov;58(11):734-41. doi: 10.1038/jhg.2013.96. Epub 2013 Sep 26.
5
Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers.
PLoS Genet. 2009 Feb;5(2):e1000337. doi: 10.1371/journal.pgen.1000337. Epub 2009 Feb 6.
6
The regulation of direct-to-consumer genetic tests.
Hum Mol Genet. 2008 Oct 15;17(R2):R180-3. doi: 10.1093/hmg/ddn253.
7
Concordance study of 3 direct-to-consumer genetic-testing services.
Clin Chem. 2011 Mar;57(3):518-21. doi: 10.1373/clinchem.2010.158220. Epub 2010 Dec 15.
8
Genotype-based risk and pharmacogenetic sampling in clinical trials.
J Biopharm Stat. 2010 Mar;20(2):315-33. doi: 10.1080/10543400903572779.
9
Comparison of commercial genetic-testing services in Korea with 23andMe service.
Biomed Res Int. 2014;2014:539151. doi: 10.1155/2014/539151. Epub 2014 Jun 25.
10
The role of disease characteristics in the ethical debate on personal genome testing.
BMC Med Genomics. 2012 Jan 19;5:4. doi: 10.1186/1755-8794-5-4.

引用本文的文献

1
Considerations for developing regulations for direct-to-consumer genetic testing: a scoping review using the 3-I framework.
J Community Genet. 2022 Apr;13(2):155-170. doi: 10.1007/s12687-022-00582-3. Epub 2022 Feb 16.
2
Psoriasis and Genetics.
Acta Derm Venereol. 2020 Jan 30;100(3):adv00030. doi: 10.2340/00015555-3384.
3
Public reactions to direct-to-consumer genetic health tests: A comparison across the US, UK, Japan and Australia.
Eur J Hum Genet. 2020 Mar;28(3):339-348. doi: 10.1038/s41431-019-0529-8. Epub 2019 Oct 23.
4
Development of a general logistic model for disease risk prediction using multiple SNPs.
FEBS Open Bio. 2019 Nov;9(11):2006-2012. doi: 10.1002/2211-5463.12722. Epub 2019 Sep 27.
5
Patients' willingness to share digital health and non-health data for research: a cross-sectional study.
BMC Med Inform Decis Mak. 2019 Aug 8;19(1):157. doi: 10.1186/s12911-019-0886-9.
7
Systems-Mapping of Herbal Effects on Complex Diseases Using the Network-Perturbation Signatures.
Front Pharmacol. 2018 Oct 18;9:1174. doi: 10.3389/fphar.2018.01174. eCollection 2018.
10
Cost Analyses of Genomic Sequencing: Lessons Learned from the MedSeq Project.
Value Health. 2018 Sep;21(9):1054-1061. doi: 10.1016/j.jval.2018.06.013. Epub 2018 Aug 14.

本文引用的文献

2
Five years of GWAS discovery.
Am J Hum Genet. 2012 Jan 13;90(1):7-24. doi: 10.1016/j.ajhg.2011.11.029.
3
Concordance study of 3 direct-to-consumer genetic-testing services.
Clin Chem. 2011 Mar;57(3):518-21. doi: 10.1373/clinchem.2010.158220. Epub 2010 Dec 15.
4
Discriminative accuracy of genomic profiling comparing multiplicative and additive risk models.
Eur J Hum Genet. 2011 Feb;19(2):180-5. doi: 10.1038/ejhg.2010.165. Epub 2010 Nov 17.
5
Effect size measures in genetic association studies and age-conditional risk prediction.
Hum Hered. 2010;70(3):205-18. doi: 10.1159/000319192. Epub 2010 Sep 13.
6
Multigenic condition risk assessment in direct-to-consumer genomic services.
Genet Med. 2010 May;12(5):279-88. doi: 10.1097/GIM.0b013e3181d5f73b.
7
The past, present, and future of direct-to-consumer genetic tests.
Dialogues Clin Neurosci. 2010;12(1):61-8. doi: 10.31887/DCNS.2010.12.1/ahelgason.
8
Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases.
PLoS One. 2009 Nov 30;4(11):e8068. doi: 10.1371/journal.pone.0008068.
10
An agenda for personalized medicine.
Nature. 2009 Oct 8;461(7265):724-6. doi: 10.1038/461724a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验