Jo Kyubong, Chen Yeng-Long, de Pablo Juan J, Schwartz David C
Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 121-742, Republic of Korea.
Lab Chip. 2009 Aug 21;9(16):2348-55. doi: 10.1039/b902292a. Epub 2009 Jun 10.
Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.
现代生物学的许多研究都依赖于在高通量分子分析之前,通过对分子进行策略性操控来创建有序阵列。通常,DNA阵列涉及在表面沉积或限制在纳米通道中;然而,我们表明微流控装置可以通过补充表面模式或极端限制条件的方式,在可控流中呈现拉伸的分子。在这里,我们利用微通道中产生的压力驱动振荡剪切流作为一种拉伸DNA分子的新方法,用于对单个DNA分子的“阵列”进行成像。流体剪切效应既能拉伸DNA分子,又能使它们从壁面迁移开,从而集中在通道的中心线处。我们展示了实验结果,证实了使用考虑分子与通道流边界条件之间流体动力学相互作用的布朗动力学进行的模拟。我们的研究结果将DNA伸长和迁移现象表征为分子大小、剪切速率、振荡频率的函数,并与计算机模拟研究进行了比较。