Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, China.
Soft Matter. 2018 Nov 7;14(43):8780-8791. doi: 10.1039/c8sm00863a.
Fragmenting DNA into short pieces is an essential manipulation in many biological studies, ranging from genome sequencing to molecular diagnosis. Among various DNA fragmentation methods, microfluidic hydrodynamic DNA fragmentation has huge advantages especially in terms of handling small-volume samples and being integrated into automatic and all-in-one DNA analysis equipment. Despite the fast progress in experimental studies and applications, a systematic understanding of how DNA molecules are distributed, stretched and fragmented in a confined microfluidic field is still lacking. In this work, we investigate the extension and fragmentation of DNA in a typical contractive microfluidic field, which consists of a shear flow-dominated area and an elongational flow-dominated area, using the Brownian dynamics-computational fluid dynamics method. Our results show that the shear flow at the straight part of the microfluidic channel and the elongational flow at the contractive bottleneck together determine the performance of DNA fragmentation. The average fragment size of DNA decreases with the increase of the strain rate of the elongational flow, and the upstream shear flow can significantly precondition the conformation of DNA to produce shorter and more uniform fragments. A systematic study of the dynamics of DNA fragmentation shows that DNA tends to break at the mid-point when the strain rate of elongational flow is small, and the breakage point largely deviates from the midpoint as the strain rate increases. Our simulation of the thorough DNA fragmentation process in a realistic microfluidic field agrees well with experimental results. We expect that our study can shed new light on the development of future microfluidic devices for DNA fragmentation and integrated DNA analysis devices.
将 DNA 片段化为短片段是许多生物学研究的基本操作,从基因组测序到分子诊断都有涉及。在各种 DNA 片段化方法中,微流控流体动力学 DNA 片段化具有巨大的优势,特别是在处理小体积样品和集成到自动和一体化 DNA 分析设备方面。尽管在实验研究和应用方面取得了快速进展,但对于 DNA 分子在受限的微流场中如何分布、拉伸和片段化,仍缺乏系统的理解。在这项工作中,我们使用布朗动力学-计算流体动力学方法研究了典型收缩微流场中 DNA 的延伸和片段化。该微流场由剪切流主导区域和拉伸流主导区域组成。我们的结果表明,微流道直段的剪切流和收缩瓶颈处的拉伸流共同决定了 DNA 片段化的性能。DNA 的平均片段大小随拉伸流的应变速率的增加而减小,上游剪切流可以显著调节 DNA 的构象,从而产生更短、更均匀的片段。对 DNA 片段化动力学的系统研究表明,当拉伸流的应变速率较小时,DNA 倾向于在中点断裂,而当应变速率增加时,断裂点会大大偏离中点。我们对实际微流场中彻底 DNA 片段化过程的模拟与实验结果吻合良好。我们期望我们的研究能够为未来用于 DNA 片段化和集成 DNA 分析设备的微流控设备的发展提供新的思路。