Dijkstra Martijn, Jansen Ritsert C
Groningen Bioinformatics Centre, University of Groningen, Haren, The Netherlands.
Proteomics. 2009 Aug;9(15):3869-76. doi: 10.1002/pmic.200701064.
Due to physical and chemical phenomena, a simple sample can give rise to a complex mass spectrum with many more peaks than the number of molecular species present in the sample. We link peaks within and between different spectra, and come up with an advanced analysis approach to produce reliable estimates of the molecule masses and abundances. By linking peaks, we can locate multiple-charge peaks at the correct position in the spectrum, we can deconvolute complex regions with many overlapping peaks by including information from related regions with lower complexity and higher resolution, and we reduce the total number of observed peaks in a spectrum to a much smaller number of underlying molecular species. In this paper we properly model 29 952 peaks in 64 spectra, using only 39 location parameters and one shape parameter. This major reduction from many different molecules to a limited set of molecular species reduces the statistical test multiplicity for biomarker discovery and therefore we imply that the reduction should eventually increase the biomarker discovery power significantly, too.
由于物理和化学现象,一个简单的样本可能会产生一个复杂的质谱,其峰的数量比样本中存在的分子种类的数量多得多。我们将不同光谱内和不同光谱之间的峰联系起来,并提出一种先进的分析方法,以产生对分子质量和丰度的可靠估计。通过将峰联系起来,我们可以在光谱中的正确位置定位多电荷峰,可以通过纳入来自复杂度较低和分辨率较高的相关区域的信息来对具有许多重叠峰的复杂区域进行去卷积,并且我们将光谱中观察到的峰的总数减少到数量少得多的潜在分子种类。在本文中,我们仅使用39个位置参数和一个形状参数就对64个光谱中的29952个峰进行了恰当建模。从许多不同的分子大幅减少到一组有限的分子种类,降低了生物标志物发现中的统计检验多重性,因此我们认为这种减少最终也应该会显著提高生物标志物的发现能力。