Spindler Shana R, Ortiz Irma, Fung Siaumin, Takashima Shigeo, Hartenstein Volker
Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
Dev Biol. 2009 Oct 15;334(2):355-68. doi: 10.1016/j.ydbio.2009.07.035. Epub 2009 Jul 29.
Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development.
神经胶质细胞在发育中的大脑中,于轴突成束、生长锥导向和神经元存活过程中发挥着重要作用。在果蝇大脑中,已鉴定出三类主要的神经胶质细胞,包括表面胶质细胞、皮质胶质细胞和神经毡胶质细胞。虽然表面胶质细胞包裹着大脑,参与血脑屏障的形成以及神经母细胞增殖的控制,但皮质胶质细胞和神经毡胶质细胞的功能范围却了解得较少。在本研究中,我们使用nirvana2 - GAL4驱动子来观察皮质胶质细胞和神经毡胶质细胞与不同脑谱系形成的轴突束之间的关联,并通过诱导凋亡选择性地消除这些胶质细胞群体。幼虫的中枢大脑由大约100个谱系组成。每个谱系形成一个紧密的轴突束,即次级轴突束(SAT)。在进入和穿过大脑神经毡时,SAT以一种独特的方式与胶质细胞相互作用。一些SAT完全被胶质细胞突起所包裹;其他的则与胶质细胞没有特定关联,而大多数则介于这两个极端情况之间。我们的结果表明,胶质细胞的消除会导致SAT成束和轨迹出现异常。最普遍的表型是轴突束截断或导向错误,或者是通常形成独立路径的束出现异常成束。重要的是,胶质细胞与特定谱系的关联程度与胶质细胞消融所导致的表型严重程度呈正相关。先前的研究主要集中在胚胎神经索或成体特定区域来确定胶质细胞的作用。我们的研究首次提供了对幼虫发育过程中大脑轴突形成和生长期间胶质细胞功能的分析。