Goodarzi Mohammad, Freitas Matheus P, Ramalho Teodorico C
Department of Chemistry, Faculty of Sciences, Azad University, Arak, Iran.
Spectrochim Acta A Mol Biomol Spectrosc. 2009 Oct 1;74(2):563-8. doi: 10.1016/j.saa.2009.07.003. Epub 2009 Aug 3.
The (13)C chemical shifts of 19 methoxyflavonol derivatives have been modeled through using a structure-based quantitative structure-property relationship approach, which is based on the treatment of 2D images. In MIA-QSPR (multivariate image analysis applied to quantitative-structure-property relationships), descriptors correlating with dependent variables are pixels (binaries) of 2D chemical structures; variant pixels in the structures (substituents) account for the explained variance in the chemical shifts. Thus, a predictive model may be built from the regression between descriptors and experimental data. The MIA-QSPR approach coupled to partial least squares (PLS) regression built for the series of flavonols revealed that the predictive ability of MIA descriptors is comparable, or even superior for the fused rings moiety, when compared to the well-known Gauge Included Atomic Orbital (GIAO) procedure for (13)C chemical shifts calculations.
通过基于二维图像处理的基于结构的定量结构-性质关系方法,对19种甲氧基黄酮醇衍生物的(13)C化学位移进行了建模。在MIA-QSPR(应用于定量结构-性质关系的多变量图像分析)中,与因变量相关的描述符是二维化学结构的像素(二进制);结构中的可变像素(取代基)解释了化学位移中的方差。因此,可以根据描述符与实验数据之间的回归建立预测模型。与为黄酮醇系列建立的偏最小二乘(PLS)回归相结合的MIA-QSPR方法表明,与用于(13)C化学位移计算的著名的包含原子轨道规范(GIAO)程序相比,MIA描述符的预测能力相当,甚至对于稠环部分更优越。