Chemistry Department, Faculty of Science, Vali-e-Asr University, Rafsanjan, Iran.
Talanta. 2010 Nov 15;83(1):225-32. doi: 10.1016/j.talanta.2010.09.012. Epub 2010 Sep 16.
A new implemented QSPR method, whose descriptors achieved from bidimensional images, was applied for predicting (13)C NMR chemical shifts of 25 mono substituted naphthalenes. The resulted descriptors were subjected to principal component analysis (PCA) and the most significant principal components (PCs) were extracted. MIA-QSPR (multivariate image analysis applied to quantitative structure-property relationship) modeling was done by means of principal component regression (PCR) and principal component-artificial neural network (PC-ANN) methods. Eigen value ranking (EV) and correlation ranking (CR) were used here to select the most relevant set of PCs as inputs for PCR and PC-ANN modeling methods. The results supported that the correlation ranking-principal component-artificial neural network (CR-PC-ANN) model could predict the (13)C NMR chemical shifts of all 10 carbon atoms in mono substituted naphthalenes with R(2) ≥ 0.922 for training set, R(2) ≥ 0.963 for validation set and R(2) ≥ 0.936 for the test set. Comparison of the results with other existing factor selection method revealed that less accurate results were obtained by the eigen value ranking procedure.
一种新的实现的 QSPR 方法,其描述符从二维图像中获得,用于预测 25 种单取代萘的 (13)C NMR 化学位移。得到的描述符进行主成分分析(PCA),并提取最显著的主成分(PC)。多元图像分析(MIA)-定量结构-性质关系(QSPR)模型通过主成分回归(PCR)和主成分-人工神经网络(PC-ANN)方法进行。本研究采用特征值排序(EV)和相关排序(CR)来选择最相关的一组 PC 作为 PCR 和 PC-ANN 建模方法的输入。结果表明,相关排序-主成分-人工神经网络(CR-PC-ANN)模型可以预测单取代萘的 10 个碳原子的 (13)C NMR 化学位移,训练集的 R(2)≥0.922,验证集的 R(2)≥0.963,测试集的 R(2)≥0.936。与其他现有的因子选择方法的结果比较表明,特征值排序过程得到的结果准确性较低。