Kwok Oi-Man, Underhill Andrea T, Berry Jack W, Luo Wen, Elliott Timothy R, Yoon Myeongsun
Department of Educational Psychology at Texas A&M University.
Rehabil Psychol. 2008 Aug;53(3):370-386. doi: 10.1037/a0012765.
The use and quality of longitudinal research designs has increased over the past two decades, and new approaches for analyzing longitudinal data, including multi-level modeling (MLM) and latent growth modeling (LGM), have been developed. The purpose of this paper is to demonstrate the use of MLM and its advantages in analyzing longitudinal data. Data from a sample of individuals with intra-articular fractures of the lower extremity from the University of Alabama at Birmingham's Injury Control Research Center is analyzed using both SAS PROC MIXED and SPSS MIXED. We start our presentation with a discussion of data preparation for MLM analyses. We then provide example analyses of different growth models, including a simple linear growth model and a model with a time-invariant covariate, with interpretation for all the parameters in the models. More complicated growth models with different between- and within-individual covariance structures and nonlinear models are discussed. Finally, information related to MLM analysis such as online resources is provided at the end of the paper.
在过去二十年中,纵向研究设计的应用和质量有所提高,并且已经开发出用于分析纵向数据的新方法,包括多层建模(MLM)和潜在增长建模(LGM)。本文的目的是展示MLM在分析纵向数据中的应用及其优势。使用SAS PROC MIXED和SPSS MIXED对来自阿拉巴马大学伯明翰分校伤害控制研究中心的下肢关节内骨折个体样本的数据进行了分析。我们首先讨论MLM分析的数据准备。然后,我们提供不同增长模型的示例分析,包括简单线性增长模型和具有时不变协变量的模型,并对模型中的所有参数进行解释。还讨论了具有不同个体间和个体内协方差结构的更复杂增长模型以及非线性模型。最后,在本文末尾提供了与MLM分析相关的信息,如在线资源。