Suppr超能文献

人类硒代半胱氨酸插入序列(SECIS)元件中的新型结构决定簇调节UGA作为硒代半胱氨酸的翻译重编码。

Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine.

作者信息

Latrèche Lynda, Jean-Jean Olivier, Driscoll Donna M, Chavatte Laurent

机构信息

Centre de recherche de Gif-sur-Yvette, FRC 3115, Centre de Génétique Moléculaire, CNRS, FRE 3144, Gif-sur-Yvette, F-75005 Paris, France.

出版信息

Nucleic Acids Res. 2009 Sep;37(17):5868-80. doi: 10.1093/nar/gkp635. Epub 2009 Aug 3.

Abstract

The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3'-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS elements encoded in the human genome. Surprisingly, the SECIS elements displayed a wide range of UGA recoding activities, spanning several 1000-fold in vivo and several 100-fold in vitro. The difference in activity between a representative strong and weak SECIS element was not explained by differential binding affinity of SECIS binding Protein 2, a limiting factor for selenocysteine incorporation. Using chimeric SECIS molecules, we identified the internal loop and helix 2, which flank the kink-turn motif, as critical determinants of UGA recoding activity. The simultaneous presence of a GC base pair in helix 2 and a U in the 5'-side of the internal loop was a statistically significant predictor of weak recoding activity. Thus, the SECIS contains intrinsic information that modulates selenocysteine incorporation efficiency.

摘要

硒代半胱氨酸插入序列(SECIS)元件指导UGA密码子转译为硒代半胱氨酸。在真核生物中,SECIS位于硒蛋白mRNA 3'-UTR中UGA密码子的下游。尽管序列保守性较差,但所有SECIS元件均形成相似的茎环结构,其中包含一个假定的扭结转角基序。我们对人类基因组中编码的26个SECIS元件进行了功能表征。令人惊讶的是,SECIS元件展现出广泛的UGA转译重编码活性,在体内跨度达数千倍,在体外跨度达数百倍。一个具有代表性的强SECIS元件和弱SECIS元件之间的活性差异,无法通过硒代半胱氨酸掺入的限制因子——SECIS结合蛋白2的不同结合亲和力来解释。利用嵌合SECIS分子,我们确定了扭结转角基序两侧的内环和螺旋2是UGA转译重编码活性的关键决定因素。螺旋2中同时存在GC碱基对以及内环5'侧存在尿嘧啶,是弱转译重编码活性的一个具有统计学意义的预测指标。因此,SECIS包含调节硒代半胱氨酸掺入效率的内在信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d7/2761289/e105aa067d85/gkp635f1.jpg

相似文献

1
Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine.
Nucleic Acids Res. 2009 Sep;37(17):5868-80. doi: 10.1093/nar/gkp635. Epub 2009 Aug 3.
2
Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
Nat Struct Mol Biol. 2005 May;12(5):408-16. doi: 10.1038/nsmb922. Epub 2005 Apr 10.
3
Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
RNA Biol. 2014;11(11):1402-13. doi: 10.1080/15476286.2014.996472.
4
Selenocysteine insertion directed by the 3'-UTR SECIS element in Escherichia coli.
Nucleic Acids Res. 2005 Apr 29;33(8):2486-92. doi: 10.1093/nar/gki547. Print 2005.
6
Identification of the Selenoprotein S Positive UGA Recoding (SPUR) element and its position-dependent activity.
RNA Biol. 2019 Dec;16(12):1682-1696. doi: 10.1080/15476286.2019.1653681. Epub 2019 Aug 21.
7
The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element.
RNA Biol. 2012 May;9(5):681-90. doi: 10.4161/rna.20147. Epub 2012 May 1.
8
Decoding apparatus for eukaryotic selenocysteine insertion.
EMBO Rep. 2000 Aug;1(2):158-63. doi: 10.1093/embo-reports/kvd033.
9
SECISaln, a web-based tool for the creation of structure-based alignments of eukaryotic SECIS elements.
Bioinformatics. 2009 Mar 1;25(5):674-5. doi: 10.1093/bioinformatics/btp020. Epub 2009 Jan 29.

引用本文的文献

3
Unconventional genetic code systems in archaea.
Front Microbiol. 2022 Sep 8;13:1007832. doi: 10.3389/fmicb.2022.1007832. eCollection 2022.
4
eIF3 Interacts with Selenoprotein mRNAs.
Biomolecules. 2022 Sep 9;12(9):1268. doi: 10.3390/biom12091268.
5
The selenoprotein P 3' untranslated region is an RNA binding protein platform that fine tunes selenocysteine incorporation.
PLoS One. 2022 Jul 29;17(7):e0271453. doi: 10.1371/journal.pone.0271453. eCollection 2022.
9
Selenium, Selenoproteins and Viral Infection.
Nutrients. 2019 Sep 4;11(9):2101. doi: 10.3390/nu11092101.

本文引用的文献

1
The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated.
Biochim Biophys Acta. 2009 Nov;1790(11):1415-23. doi: 10.1016/j.bbagen.2009.03.003. Epub 2009 Mar 11.
2
Regulation of the extracellular antioxidant selenoprotein plasma glutathione peroxidase (GPx-3) in mammalian cells.
Mol Cell Biochem. 2009 Jul;327(1-2):111-26. doi: 10.1007/s11010-009-0049-x. Epub 2009 Feb 15.
3
SECISaln, a web-based tool for the creation of structure-based alignments of eukaryotic SECIS elements.
Bioinformatics. 2009 Mar 1;25(5):674-5. doi: 10.1093/bioinformatics/btp020. Epub 2009 Jan 29.
5
The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery.
J Cell Biol. 2008 Feb 11;180(3):579-95. doi: 10.1083/jcb.200708110.
6
SelenoDB 1.0 : a database of selenoprotein genes, proteins and SECIS elements.
Nucleic Acids Res. 2008 Jan;36(Database issue):D332-8. doi: 10.1093/nar/gkm731. Epub 2008 Jan 3.
10
The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply.
Nucleic Acids Res. 2007;35(12):3963-73. doi: 10.1093/nar/gkm355. Epub 2007 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验