Suppr超能文献

区分直接与间接转录因子-DNA 相互作用。

Distinguishing direct versus indirect transcription factor-DNA interactions.

机构信息

Department of Computer Science, Duke University, Durham, North Carolina 27708, USA.

出版信息

Genome Res. 2009 Nov;19(11):2090-100. doi: 10.1101/gr.094144.109. Epub 2009 Aug 3.

Abstract

Transcriptional regulation is largely enacted by transcription factors (TFs) binding DNA. Large numbers of TF binding motifs have been revealed by ChIP-chip experiments followed by computational DNA motif discovery. However, the success of motif discovery algorithms has been limited when applied to sequences bound in vivo (such as those identified by ChIP-chip) because the observed TF-DNA interactions are not necessarily direct: Some TFs predominantly associate with DNA indirectly through protein partners, while others exhibit both direct and indirect binding. Here, we present the first method for distinguishing between direct and indirect TF-DNA interactions, integrating in vivo TF binding data, in vivo nucleosome occupancy data, and motifs from in vitro protein binding microarray experiments. When applied to yeast ChIP-chip data, our method reveals that only 48% of the data sets can be readily explained by direct binding of the profiled TF, while 16% can be explained by indirect DNA binding. In the remaining 36%, none of the motifs used in our analysis was able to explain the ChIP-chip data, either because the data were too noisy or because the set of motifs was incomplete. As more in vitro TF DNA binding motifs become available, our method could be used to build a complete catalog of direct and indirect TF-DNA interactions. Our method is not restricted to yeast or to ChIP-chip data, but can be applied in any system for which both in vivo binding data and in vitro DNA binding motifs are available.

摘要

转录调控在很大程度上是通过转录因子(TFs)与 DNA 结合来实现的。大量的 TF 结合基序已经通过 ChIP-chip 实验和随后的计算 DNA 基序发现揭示出来。然而,当将 motif 发现算法应用于体内结合的序列(如 ChIP-chip 鉴定的序列)时,其成功受到了限制,因为观察到的 TF-DNA 相互作用不一定是直接的:一些 TF 主要通过蛋白质伴侣间接与 DNA 结合,而另一些 TF 则同时表现出直接和间接结合。在这里,我们提出了一种区分直接和间接 TF-DNA 相互作用的方法,该方法整合了体内 TF 结合数据、体内核小体占据数据和来自体外蛋白质结合微阵列实验的基序。当应用于酵母 ChIP-chip 数据时,我们的方法表明,只有 48%的数据集可以通过所分析的 TF 的直接结合来很好地解释,而 16%可以通过间接 DNA 结合来解释。在其余的 36%中,我们分析中使用的没有一个基序能够解释 ChIP-chip 数据,要么是因为数据太嘈杂,要么是因为基序集不完整。随着更多体外 TF-DNA 结合基序的出现,我们的方法可以用来构建直接和间接 TF-DNA 相互作用的完整目录。我们的方法不仅限于酵母或 ChIP-chip 数据,而是可以应用于任何具有体内结合数据和体外 DNA 结合基序的系统。

相似文献

1
Distinguishing direct versus indirect transcription factor-DNA interactions.
Genome Res. 2009 Nov;19(11):2090-100. doi: 10.1101/gr.094144.109. Epub 2009 Aug 3.
2
High-resolution DNA-binding specificity analysis of yeast transcription factors.
Genome Res. 2009 Apr;19(4):556-66. doi: 10.1101/gr.090233.108. Epub 2009 Jan 21.
3
Identifying cooperative transcription factors in yeast using multiple data sources.
BMC Syst Biol. 2014;8 Suppl 5(Suppl 5):S2. doi: 10.1186/1752-0509-8-S5-S2. Epub 2014 Dec 12.
6
A nucleosome-guided map of transcription factor binding sites in yeast.
PLoS Comput Biol. 2007 Nov;3(11):e215. doi: 10.1371/journal.pcbi.0030215. Epub 2007 Sep 24.
7
High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
PLoS Comput Biol. 2010 Sep 9;6(9):e1000916. doi: 10.1371/journal.pcbi.1000916.
10
Nonspecific transcription-factor-DNA binding influences nucleosome occupancy in yeast.
Biophys J. 2011 Nov 16;101(10):2465-75. doi: 10.1016/j.bpj.2011.10.012. Epub 2011 Nov 15.

引用本文的文献

1
Many transcription factor families have evolutionarily conserved binding motifs in plants.
Plant Physiol. 2025 May 30;198(2). doi: 10.1093/plphys/kiaf205.
3
NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation.
Bioinform Adv. 2024 Dec 20;5(1):vbae206. doi: 10.1093/bioadv/vbae206. eCollection 2025.
4
A DNA base-specific sequence interposed between CRX and NRL contributes to RHODOPSIN expression.
Sci Rep. 2024 Nov 1;14(1):26313. doi: 10.1038/s41598-024-76664-8.
5
Deep learning the cis-regulatory code for gene expression in selected model plants.
Nat Commun. 2024 Apr 25;15(1):3488. doi: 10.1038/s41467-024-47744-0.
7
Akirin/Subolesin regulatory mechanisms at host/tick-pathogen interactions.
Microlife. 2021 Nov 11;3:uqab012. doi: 10.1093/femsml/uqab012. eCollection 2022.
8
Computational approaches to understand transcription regulation in development.
Biochem Soc Trans. 2023 Feb 27;51(1):1-12. doi: 10.1042/BST20210145.
9
Interactions Between Natural Products and Tamoxifen in Breast Cancer: A Comprehensive Literature Review.
Front Pharmacol. 2022 Jun 2;13:847113. doi: 10.3389/fphar.2022.847113. eCollection 2022.

本文引用的文献

2
Diversity and complexity in DNA recognition by transcription factors.
Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.
3
High-resolution DNA-binding specificity analysis of yeast transcription factors.
Genome Res. 2009 Apr;19(4):556-66. doi: 10.1101/gr.090233.108. Epub 2009 Jan 21.
5
The DNA-encoded nucleosome organization of a eukaryotic genome.
Nature. 2009 Mar 19;458(7236):362-6. doi: 10.1038/nature07667. Epub 2008 Dec 17.
6
Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences.
Cell. 2008 Jun 27;133(7):1266-76. doi: 10.1016/j.cell.2008.05.024.
7
Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis.
Microbiology (Reading). 2008 Jun;154(Pt 6):1686-1699. doi: 10.1099/mic.0.2008/017392-0.
9
A high-resolution atlas of nucleosome occupancy in yeast.
Nat Genet. 2007 Oct;39(10):1235-44. doi: 10.1038/ng2117. Epub 2007 Sep 16.
10
Genome-wide mapping of in vivo protein-DNA interactions.
Science. 2007 Jun 8;316(5830):1497-502. doi: 10.1126/science.1141319. Epub 2007 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验