Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Praha, Czech Republic.
J Phys Chem A. 2011 Oct 20;115(41):11394-402. doi: 10.1021/jp205442p. Epub 2011 Sep 2.
To address fundamental questions in bioinorganic chemistry, such as metal ion selectivity, accurate computational protocols for both the gas-phase association of metal-ligand complexes and solvation/desolvation energies of the species involved are needed. In this work, we attempt to critically evaluate the performance of the ab initio and DFT electronic structure methods available and recent solvation models in calculations of the energetics associated with metal ion complexation. On the example of five model complexes (M(II)(CH(3)S)(H(2)O), M(II)(H(2)O)(2)(H(2)S)(NH(3)), [M(II)(CH(3)S)(NH(3))(H(2)O)(CH(3)COO)], [M(II)(H(2)O)(3)(SH)(CH(3)COO)(Im)], M(II)(H(2)S)(H(2)O)(CH(3)COO)(PhOH)(Im) in typical coordination geometries) and four metal ions (Fe(2+), Cu(2+), Zn(2+), and Cd(2+); representing open- and closed-shell and the first- and second-row transition metal elements), we provide reference values for the gas-phase complexation energies, as presumably obtained using the CCSD(T)/aug-cc-pVTZ method, and compare them with cheaper methods, such as DFT and RI-MP2, that can be used for large-scale calculations. We also discuss two possible definitions of interaction energies underlying the theoretically predicted metal-ion selectivity and the effect of geometry optimization on these values. Finally, popular solvation models, such as COSMO-RS and SMD, are used to demonstrate whether quantum chemical calculations can provide the overall free enthalpy (ΔG) changes in the range of the expected experimental values for the model complexes or match the experimental stability constants in the case of three complexes for which the experimental data exist. The data presented highlight several intricacies in the theoretical predictions of the experimental stability constants: the covalent character of some metal-ligand bonds (e.g., Cu(II)-thiolate) causing larger errors in the gas-phase complexation energies, inaccuracies in the treatment of solvation of the charged species, and difficulties in the definition of the reference state for Jahn-Teller unstable systems (e.g., Cu(H(2)O)(6)). Although the agreement between the experimental (as derived from the stability constants) and calculated values is often within 5 kcal·mol(-1), in more complicated cases, it may exceed 15 kcal·mol(-1). Therefore, extreme caution must be exercised in assessing the subtle issues of metal ion selectivity quantitatively.
为了解决生物无机化学中的基本问题,如金属离子选择性,需要准确的计算协议,用于气相金属-配体络合物的缔合以及所涉及物种的溶剂化/去溶剂化能量。在这项工作中,我们试图批判性地评估可用的从头算和密度泛函理论(DFT)电子结构方法以及最近的溶剂化模型在计算与金属离子络合相关的能量方面的性能。以五个模型配合物(M(II)(CH(3)S)(H(2)O), M(II)(H(2)O)(2)(H(2)S)(NH(3)), [M(II)(CH(3)S)(NH(3))(H(2)O)(CH(3)COO)], [M(II)(H(2)O)(3)(SH)(CH(3)COO)(Im)], M(II)(H(2)S)(H(2)O)(CH(3)COO)(PhOH)(Im)在典型的配位几何形状)和四种金属离子(Fe(2+),Cu(2+),Zn(2+)和 Cd(2+);代表开壳和闭壳以及第一和第二过渡金属元素)为例,我们提供了气相络合能的参考值,据推测是使用 CCSD(T)/aug-cc-pVTZ 方法获得的,并将其与更便宜的方法(例如 DFT 和 RI-MP2)进行了比较,这些方法可用于大规模计算。我们还讨论了理论预测的金属离子选择性的基础上的两种可能的相互作用能定义以及对这些值的几何优化的影响。最后,使用了流行的溶剂化模型(例如 COSMO-RS 和 SMD),以证明量子化学计算是否可以提供模型配合物预期实验值范围内的整体自由焓(ΔG)变化,或者在存在实验数据的情况下与三个配合物的实验稳定常数匹配。所呈现的数据突出了实验稳定常数理论预测中的几个复杂性:某些金属-配体键的共价性质(例如 Cu(II)-硫醇)导致气相络合能的更大误差,带电物种溶剂化的处理不准确以及 Jahn-Teller 不稳定体系参考状态的定义困难(例如Cu(H(2)O)(6))。尽管实验值(源自稳定性常数)与计算值之间的一致性通常在 5 kcal·mol(-1)以内,但在更复杂的情况下,它可能超过 15 kcal·mol(-1)。因此,在定量评估金属离子选择性的细微问题时必须非常谨慎。