Bartling Craig M, Raetz Christian R H
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
Biochemistry. 2009 Sep 15;48(36):8672-83. doi: 10.1021/bi901025v.
LpxD catalyzes the third step of lipid A biosynthesis, the R-3-hydroxyacyl-ACP-dependent N-acylation of UDP-3-O-(acyl)-alpha-D-glucosamine, and is a target for new antibiotic development. Here we report the 2.6 A crystal structure of the Escherichia coli LpxD homotrimer (EcLpxD). As is the case in Chlamydia trachomatis LpxD (CtLxpD), each EcLpxD chain consists of an N-terminal uridine-binding region, a left-handed parallel beta-helix (LbetaH), and a C-terminal alpha-helical domain. The backbones of the LbetaH domains of the two enzymes are similar, as are the positions of key active site residues. The N-terminal nucleotide binding domains are oriented differently relative to the LbetaH regions, but are similar when overlaid on each other. The orientation of the EcLpxD tripeptide (residues 303-305), connecting the distal end of the LbetaH and the proximal end of the C-terminal helical domains, differs from its counterpart in CtLpxD (residues 311-312); this results in a 120 degrees rotation of the C-terminal domain relative to the LbetaH region in EcLpxD versus CtLpxD. M290 of EcLpxD appears to cap the distal end of a hydrophobic cleft that binds the acyl chain of the R-3-hydroxyacyl-ACP donor substrate. Under standard assay conditions, wild-type EcLpxD prefers R,S-3-hydroxymyristoyl-ACP over R,S-3-hydroxypalmitoyl-ACP by a factor of 3, whereas the M290A mutant has the opposite selectivity. Both wild-type and M290A EcLpxD rescue the conditional lethality of E. coli RL25, a temperature-sensitive strain harboring point mutations in lpxD. Complementation with wild-type EcLpxD restores normal lipid A containing only N-linked hydroxymyristate to RL25 at 42 degrees C, as judged by mass spectrometry, whereas the M290A mutant generates multiple lipid A species containing one or two longer hydroxy fatty acids in place of the usual R-3-hydroxymyristate at positions 2 and 2'.
LpxD催化脂多糖A生物合成的第三步,即UDP-3-O-(酰基)-α-D-葡糖胺的R-3-羟基酰基-ACP依赖性N-酰化反应,是新型抗生素开发的一个靶点。在此,我们报道了大肠杆菌LpxD同三聚体(EcLpxD)的2.6埃晶体结构。与沙眼衣原体LpxD(CtLxpD)的情况一样,每个EcLpxD链都由一个N端尿苷结合区、一个左手平行β-螺旋(LβH)和一个C端α-螺旋结构域组成。这两种酶LβH结构域的主链相似,关键活性位点残基的位置也相似。N端核苷酸结合结构域相对于LβH区域的取向不同,但相互叠加时相似。连接LβH远端和C端螺旋结构域近端的EcLpxD三肽(残基303 - 305)的取向与其在CtLpxD中的对应物(残基311 - 312)不同;这导致EcLpxD与CtLpxD相比,C端结构域相对于LβH区域旋转了120度。EcLpxD的M290似乎覆盖了结合R-3-羟基酰基-ACP供体底物酰基链的疏水裂缝的远端。在标准测定条件下,野生型EcLpxD对R,S-3-羟基肉豆蔻酰-ACP的偏好性比对R,S-3-羟基棕榈酰-ACP高3倍,而M290A突变体具有相反的选择性。野生型和M290A EcLpxD都能挽救大肠杆菌RL25的条件致死性,RL25是一种在lpxD中存在点突变的温度敏感菌株。通过质谱分析判断,在42℃时,用野生型EcLpxD互补可使RL25恢复到仅含N-连接羟基肉豆蔻酸的正常脂多糖A,而M290A突变体则产生多种脂多糖A种类,其中在2位和2'位含有一种或两种更长的羟基脂肪酸,取代了通常的R-3-羟基肉豆蔻酸。