Suppr超能文献

R/BHC:用于微阵列数据的快速贝叶斯层次聚类

R/BHC: fast Bayesian hierarchical clustering for microarray data.

作者信息

Savage Richard S, Heller Katherine, Xu Yang, Ghahramani Zoubin, Truman William M, Grant Murray, Denby Katherine J, Wild David L

机构信息

Systems Biology Centre, University of Warwick, Coventry House, Coventry CV47AL, UK.

出版信息

BMC Bioinformatics. 2009 Aug 6;10:242. doi: 10.1186/1471-2105-10-242.

Abstract

BACKGROUND

Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained.

RESULTS

We present an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative hierarchical clustering and demonstrate its use in clustering gene expression microarray data. The method performs bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture) to model uncertainty in the data and Bayesian model selection to decide at each step which clusters to merge.

CONCLUSION

Biologically plausible results are presented from a well studied data set: expression profiles of A. thaliana subjected to a variety of biotic and abiotic stresses. Our method avoids several limitations of traditional methods, for example how many clusters there should be and how to choose a principled distance metric.

摘要

背景

尽管聚类方法的使用已迅速成为微阵列基因表达数据分析文献中的标准计算方法之一,但对于所得结果中的不确定性却很少有人关注。

结果

我们展示了一种用于贝叶斯凝聚层次聚类的快速新颖算法的R/Bioconductor端口,并演示了其在聚类基因表达微阵列数据中的应用。该方法执行自下而上的层次聚类,使用狄利克雷过程(无限混合)对数据中的不确定性进行建模,并通过贝叶斯模型选择在每一步决定合并哪些聚类。

结论

从一个经过充分研究的数据集——遭受各种生物和非生物胁迫的拟南芥的表达谱中得出了生物学上合理的结果。我们的方法避免了传统方法的几个局限性,例如应该有多少个聚类以及如何选择合理的距离度量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d2/2736174/5ce1b396bea4/1471-2105-10-242-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验