Suppr超能文献

早期自闭症中对面部加工的理解:一项前瞻性研究。

Understanding the nature of face processing in early autism: A prospective study.

机构信息

Department of Child and Adolescent Psychiatry and MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London.

Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center.

出版信息

J Psychopathol Clin Sci. 2022 Aug;131(6):542-555. doi: 10.1037/abn0000648.

Abstract

Dimensional approaches to psychopathology interrogate the core neurocognitive domains interacting at the individual level to shape diagnostic symptoms. Embedding this approach in prospective longitudinal studies could transform our understanding of the mechanisms underlying neurodevelopmental disorders. Such designs require us to move beyond traditional group comparisons and determine which domain-specific alterations apply at the level of the individual, and whether they vary across distinct phenotypic subgroups. As a proof of principle, this study examines how the domain of face processing contributes to the emergence of autism spectrum disorder (ASD). We used an event-related potentials (ERPs) task in a cohort of 8-month-old infants with (n = 148) and without (n = 68) an older sibling with ASD, and combined traditional case-control comparisons with machine-learning techniques for prediction of social traits and ASD diagnosis at 36 months, and Bayesian hierarchical clustering for stratification into subgroups. A broad profile of alterations in the time-course of neural processing of faces in infancy was predictive of later ASD, with a strong convergence in ERP features predicting social traits and diagnosis. We identified two main subgroups in ASD, defined by distinct patterns of neural responses to faces, which differed on later sensory sensitivity. Taken together, our findings suggest that individual differences between infants contribute to the diffuse pattern of alterations predictive of ASD in the first year of life. Moving from group-level comparisons to pattern recognition and stratification can help to understand and reduce heterogeneity in clinical cohorts, and improve our understanding of the mechanisms that lead to later neurodevelopmental outcomes. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

多维方法探讨了在个体水平上相互作用的核心神经认知领域,以形成诊断症状。将这种方法嵌入前瞻性纵向研究中,可以改变我们对神经发育障碍潜在机制的理解。这种设计要求我们超越传统的群体比较,确定哪些特定领域的改变适用于个体水平,以及它们是否在不同的表型亚组中存在差异。作为一个原理证明,本研究考察了面部处理领域如何促进自闭症谱系障碍(ASD)的出现。我们使用事件相关电位(ERPs)任务在一个 8 个月大的婴儿队列中进行,其中有(n = 148)和没有(n = 68)有一个患有 ASD 的哥哥或姐姐,结合传统的病例对照比较与机器学习技术,用于预测 36 个月时的社交特征和 ASD 诊断,以及贝叶斯层次聚类用于分层成亚组。在婴儿期面部神经处理过程中时间进程的广泛改变与后来的 ASD 相关,ERP 特征在预测社交特征和诊断方面具有很强的一致性。我们在 ASD 中确定了两个主要的亚组,由面部神经反应的不同模式定义,这些亚组在后来的感觉敏感性上存在差异。总之,我们的研究结果表明,婴儿之间的个体差异有助于解释在生命的第一年预测 ASD 的弥散性改变模式。从群体水平比较转向模式识别和分层可以帮助理解和减少临床队列中的异质性,并提高我们对导致后来神经发育结果的机制的理解。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd4/9330670/43ab0a35f971/abn_131_6_542_fig1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验