Suppr超能文献

许旺细胞在髓鞘形成各个阶段的转录组分析表明染色质调节因子 Sin3A 参与髓鞘形成特征的控制。

Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity.

机构信息

Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, NMPA Key Laboratory for Research, Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, China.

出版信息

Neurosci Bull. 2022 Jul;38(7):720-740. doi: 10.1007/s12264-022-00850-9. Epub 2022 Apr 10.

Abstract

Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.

摘要

增强损伤后的髓鞘再生对于优化神经功能恢复至关重要。施万细胞 (SCs) 形成髓鞘对于外周神经系统的功能至关重要,但控制 SC 谱系通过髓鞘形成进展的时间动态和调节机制仍需进一步阐明。在这里,我们使用体外共培养模型、激光捕获显微解剖 SC 不同髓鞘化阶段的基因表达谱分析,以及多层次的生物信息学分析,证明 SC 在髓鞘形成过程中表现出三种不同的转录特征:未成熟、前髓鞘化和髓鞘化状态。我们表明,抑制性相互作用蛋白 3a (Sin3A) 和其他 16 个转录因子和染色质调节因子在髓鞘形成的进展中发挥重要作用。在大鼠坐骨神经挤压模型中,敲低坐骨神经或 SC 中的 Sin3A 会减少或延迟再生轴突的髓鞘形成,而过表达 Sin3A 则极大地促进了轴突的髓鞘再生。此外,体外实验表明,Sin3A 沉默抑制了前髓鞘化阶段 SC 的迁移和分化,并促进了未成熟阶段 SC 的增殖。此外,SC 分化和成熟可能受到 Sin3A/组蛋白去乙酰化酶 2 (HDAC2) 复合物与 Sox10 功能合作的调节,正如挽救实验所证明的那样。总之,这些结果补充了最近对周围神经髓鞘形成过程中 SC 的基因组和蛋白质组分析。研究结果还揭示了 Sin3A 依赖性染色质组织在促进髓鞘生成程序和 SC 分化以控制周围髓鞘形成和修复中的关键作用。这些发现可能为增强髓鞘再生和神经再生提供新的治疗方法。

相似文献

引用本文的文献

本文引用的文献

2
Myelin sheath structure and regeneration in peripheral nerve injury repair.髓鞘结构和再生在外周神经损伤修复中的作用。
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22347-22352. doi: 10.1073/pnas.1910292116. Epub 2019 Oct 14.
4
Transcriptional control of myelination and remyelination.髓鞘形成和再髓鞘化的转录控制。
Glia. 2019 Nov;67(11):2153-2165. doi: 10.1002/glia.23636. Epub 2019 Apr 30.
9
Myelin Plasticity and Nervous System Function.髓鞘可塑性与神经系统功能
Annu Rev Neurosci. 2018 Jul 8;41:61-76. doi: 10.1146/annurev-neuro-080317-061853.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验